1
|
Hui Y, Guo H, Liu Y, Zhang J, Xiao H. Two spirobifluene-based turn-on fluorescent probes for highly selective detection of Cysteine and the applications in cells two-photon fluorescence imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124342. [PMID: 38676981 DOI: 10.1016/j.saa.2024.124342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/11/2023] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Two spirobifluene-based fluorescent probes SPF1 and SPF2, were designed and synthesized. The probes displayed "turn-on" fluorescence response for Cysteine. One of the challenges in developing a Cysteine probe is to secure high selectivity. SPF1/SPF2 can discriminate Cysteine from GSH as well as Hcy, and showed high substrate selectivity. The detection limit of SPF1 is 36 nM, which is excellent comparing with other optical sensors for Cysteine. The sensing mechanism of SPF1/SPF2 was verified by experimental data and theoretical calculations. There was a good linear relationship between the fluorescence intensity of SPF1/SPF2 and the concentration of Cysteine. The MTT tests indicated that SPF1/SPF2 had low cytotoxicity and good biocompatibility. Theoretical calculations demonstrated that SPF1, SPF2, and their related reaction products with Cysteine exhibited good two-photon absorption properties. Finally, SPF1/SPF2 had been successfully applied to the imaging of Cysteine in living cells under two-photon excitation.
Collapse
Affiliation(s)
- Yufeng Hui
- Department of chemistrys, Shanghai Normal University, Shanghai 200234 PR China
| | - Hongda Guo
- Department of chemistrys, Shanghai Normal University, Shanghai 200234 PR China
| | - Yeshen Liu
- Department of chemistrys, Shanghai Normal University, Shanghai 200234 PR China
| | - Ji Zhang
- Department of chemistrys, Shanghai Normal University, Shanghai 200234 PR China
| | - Haibo Xiao
- Department of chemistrys, Shanghai Normal University, Shanghai 200234 PR China.
| |
Collapse
|
2
|
Liu Q, Liu C, He S, Zeng X, Zhang J, Gong J. A New Lysosome-Targeted NIR Fluorescent Probe for Specific Detection of Cysteine over Homocysteine and Glutathione. Molecules 2023; 28:6189. [PMID: 37687018 PMCID: PMC10489057 DOI: 10.3390/molecules28176189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
In this paper, by modifying the thioxanthene-benzothiozolium fluorophore, BCy-Cys, a lysosome-targeted near-infrared (NIR) fluorescent probe was synthesized for the detection of cysteine (Cys) from homocysteine (Hcy)/glutathione (GSH). As expected, BCy-Cys exhibited high selectivity and high sensitivity for detection of Cys over Hcy/GSH, with an extremely low limit of detection at 0.31 μM, marked by obvious color changes. HRMS was conducted to confirm that the fluorescence intensity at 795 nm was significantly enhanced by the enhancement of intramolecular charge transfer (ICT). Importantly, BCy-Cys could be used to visualize both exogenous and endogenous lysosomal Cys, signifying its potential application in complex organismal systems.
Collapse
Affiliation(s)
- Qiuchen Liu
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jian Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jin Gong
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
3
|
Chen H, Yu Z, Ren S, Qiu Y. Fluorescent Probes Design Strategies for Imaging Mitochondria and Lysosomes. Front Pharmacol 2022; 13:915609. [PMID: 35928260 PMCID: PMC9343947 DOI: 10.3389/fphar.2022.915609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
Modern cellular biology faces several major obstacles, such as the determination of the concentration of active sites corresponding to chemical substances. In recent years, the popular small-molecule fluorescent probes have completely changed the understanding of cellular biology through their high sensitivity toward specific substances in various organisms. Mitochondria and lysosomes are significant organelles in various organisms, and their interaction is closely related to the development of various diseases. The investigation of their structure and function has gathered tremendous attention from biologists. The advanced nanoscopic technologies have replaced the diffraction-limited conventional imaging techniques and have been developed to explore the unknown aspects of mitochondria and lysosomes with a sub-diffraction resolution. Recent progress in this field has yielded several excellent mitochondria- and lysosome-targeted fluorescent probes, some of which have demonstrated significant biological applications. Herein, we review studies that have been carried out to date and suggest future research directions that will harness the considerable potential of mitochondria- and lysosome-targeted fluorescent probes.
Collapse
Affiliation(s)
- Huimin Chen
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Biochemistry, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Zhenjie Yu
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shiwei Ren
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuyu Qiu
- Department of Biochemistry, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| |
Collapse
|
4
|
|
5
|
Nie G, Zhang Y, Zhou Z, Xu J, Wang H, Chen D, Wang K. Dynamic evaluation of the protective effect of Dendrobium officinale polysaccharide on acute alcoholic liver injury mice in vitro and in vivo by NIR fluorescence imaging. Anal Bioanal Chem 2021; 413:5715-5724. [PMID: 34291303 DOI: 10.1007/s00216-021-03546-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Acute alcoholic liver injury (AALI) is a threat to human health. Dendrobium officinale polysaccharide (DOP) has the potential to protect the liver by enhancing the anti-oxidative system to maintain the relative balance of ROS (active oxygen species) and antioxidants in AALI mice. However, the dynamic improvement effect of DOP on AALI is still not clear and accurate medication guidance is not available, which limits the clinical application of DOP. Because of the advantages of high sensitivity, noninvasiveness, and visualization, near-infrared (NIR) fluorescence imaging has been widely studied in biochemistry and biomedicine. As the glutathione (GSH) level in the liver is closely related to the progression of AALI, herein, an NIR fluorescent probe for GSH, HCG was used to dynamically evaluate the effect of DOP on AALI mice. In this study, DOP was proven to maintain the relative balance of GSH content in the liver to protect it from damage. To the best of our knowledge, it is the first time to assess the effect of DOP on AALI mice through a NIR fluorescence imaging technique. This study may also provide a potential NIR imaging agent for the clinical research to improve the management of liver injury-related diseases.
Collapse
Affiliation(s)
- Gang Nie
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Zhang
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhihong Zhou
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingya Xu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huiling Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Li Y, Chen L, Zhu Y, Chen L, Yu X, Li J, Chen D. Structure modulation on fluorescent probes for biothiols and the reversible imaging of glutathione in living cells. RSC Adv 2021; 11:21116-21126. [PMID: 35479348 PMCID: PMC9034037 DOI: 10.1039/d1ra03221f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/06/2021] [Indexed: 11/21/2022] Open
Abstract
The detection of small molecular biothiols (cysteine, homocysteine and glutathione) is of great importance, as they involve in a series of physiological and pathological processes and are associated with many diseases. To realize the real-time monitoring of a specific biothiol, a rapid and reversible probe is required. Therefore, three probes, namely, o-MNPy, m-MNPy and p-MNPy, with pyridine substituted α, β-unsaturated ketone as the recognition site, were reported here, and the reactivity of the recognition site was finely tuned by the connection mode of the pyridine unit. To single out the optimal one, the response performances of three probes toward each biothiol were systemically studied, taking the differences of the intracellular contents of three biothiols into account during the evaluation. Biothiols reacted with the probes through Michael addition, and results showed that the slight structural variations could affect the performances of the probes obviously. p-MNPy with the pyridine unit connected to the recognition site through the para-position of the nitrogen atom, revealed the best sensing ability among the three probes. It demonstrated rapid response, good selectivity and sensitivity, excellent pH adaptability to Cys and GSH, and displayed reversible detection toward GSH. Finally, p-MNPy was successfully applied to track the GSH fluctuations under the oxidative stress stimulated by H2O2 in living cells. A reversible fluorescent probe for GSH was obtained through structure modulation, by which the intracellular GSH fluctuation was imaged.![]()
Collapse
Affiliation(s)
- Yu Li
- Hubei Provincial Academy of Eco-Environmental Sciences Wuhan 430072 China
| | - Li Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
| | - Yan Zhu
- Hubei Provincial Academy of Eco-Environmental Sciences Wuhan 430072 China
| | - Liming Chen
- Hubei Provincial Academy of Eco-Environmental Sciences Wuhan 430072 China
| | - Xianglin Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
| | - Junbo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology Wuhan 430205 China
| | - Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
| |
Collapse
|
7
|
Sun ZB, Hua Y, Gao MJ, Shang YJ, Kang YF. Highly Selective Fluorescent 4-(4-(Diethylamino)-2-Hydroxystyryl)-1-Methylpyridine Iodide and Nitrobenzofurazan Based Probe for Cysteine with Application in Living Cells. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1767121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Zhi-Bin Sun
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yun Hua
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Meng-Jiao Gao
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and College of Laboratory Medicine, Hebei North University, Zhangjiakou, China
| | - Ya-jing Shang
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yan-Fei Kang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and College of Laboratory Medicine, Hebei North University, Zhangjiakou, China
| |
Collapse
|
8
|
Chen D, Nie G, Dang Y, Liang W, Li W, Zhong C. Rational design of near-infrared fluorophores with a phenolic D–A type structure and construction of a fluorescent probe for cysteine imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj02459k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The structural modulation of phenolic D–A type fluorophores and a NIR fluorescent probe for cysteine imaging in vitro and in vivo.
Collapse
Affiliation(s)
- Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Gang Nie
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Yecheng Dang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenjie Liang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wanqing Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Cheng Zhong
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
9
|
|
10
|
Chen D, Feng Y. Recent Progress of Glutathione (GSH) Specific Fluorescent Probes: Molecular Design, Photophysical Property, Recognition Mechanism and Bioimaging. Crit Rev Anal Chem 2020; 52:649-666. [PMID: 32941060 DOI: 10.1080/10408347.2020.1819193] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The selective detection of glutathione (GSH) in vitro and in vivo has attracted great attentions, credited to its important role in life activities and association with a series of diseases. Among all kinds of analytical techniques, the fluorescent probe for GSH detection become prevalent recently because of its ease of operation, high temporal-spatial resolution, visualization and noninvasiveness, etc. The special structural features of GSH, such as the nucleophilicity of sulfhydryl group, the concerted reaction ability of amino group, the negative charged nature, the latent hydrogen bonding ability along with its flexible molecular chain, are all potent factors to be employed to design the specific fluorescent probe for GSH and discriminate it from other bio-species including its analogues cysteine (Cys) and homocysteine (Hcy). This paper reviewed the studies in the last 3 years and was organized based on the reaction mechanism of each probe. According to the reactivity of GSH, various recognition mechanisms including Michael addition, nucleophilic aromatic substitution, ordinary nucleophilic substitution, multi-site reaction, and other unique reactions have been utilized to construct the GSH specific fluorescent probes, and the molecular design strategy, photophysical property, recognition mechanism, and bioimaging application of each reported probe were all discussed here systematically. Great progress has been made in this area, and we believe the analyses and summarization of these excellent studies would provide valuable message and inspiration to researchers to advance the research toward clinic applications.
Collapse
Affiliation(s)
- Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Yangzhen Feng
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| |
Collapse
|
11
|
Chen L, Feng Y, Dang Y, Zhong C, Chen D. A deep-red emission fluorescent probe with long wavelength absorption for viscosity detection and live cell imaging. Anal Bioanal Chem 2020; 412:7819-7826. [PMID: 32875370 DOI: 10.1007/s00216-020-02911-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
Intracellular viscosity is closely related to a series of biological processes and could be a biomarker for various diseases. Herein, we reported a deep-red emission viscosity probe ACI, which showed a turn-on fluorescence effect with excellent selectivity encountering high viscous medium. To assure the practical biological application, ACI demonstrated not only a long wavelength emission at 634 nm but also a long wavelength excitation at 566 nm, which were crucial to afford deeper penetration depth and higher sensitivity in bioimaging. The photophysical properties and viscosity recognition mechanism of the probe were carefully discussed here. Theoretical calculations furtherly confirmed that high viscous medium could inhibit the twisted intramolecular charge transfer (TICT) process of the probe which quenched the fluorescence in low viscous media, and restore the emission. More importantly, it was successfully applied to visualize the viscosity in living cells. Graphical abstract.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, Hubei, China
| | - Yangzhen Feng
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, Hubei, China
| | - Yecheng Dang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, Hubei, China
| | - Cheng Zhong
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, Hubei, China.
| |
Collapse
|
12
|
A novel near-infrared and naked-eye fluorescence probe with a large stokes shift for specific detection of cysteine and its application in living cells. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
An JM, Kim SH, Kim D. Recent advances in two-photon absorbing probes based on a functionalized dipolar naphthalene platform. Org Biomol Chem 2020; 18:4288-4297. [PMID: 32242192 DOI: 10.1039/d0ob00515k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Two-photon microscopy (TPM) techniques have been highlighted over the past two decades throughout various fields, including physics, chemistry, biology, and medicine. In particular, the two-photon near-infrared excitation of fluorophores or molecular probes emitting fluorescence have ushered in a new biomedical era, specifically in the deep-tissue imaging of biologically relevant species. Non-linear two-photon optics enables the development of 3D fluorescence images via focal point excitation of biological samples with low photo-damage and photo-bleaching. Many studies have disclosed the relationship between the chemical structure of fluorophores and their two-photon absorbing properties. In this review, we have summarized the recent advances in two-photon absorbing probes based on a functionalized electron donor (D)-acceptor (A) type dipolar naphthalene platform (FDNP) that was previously reported between 2015 and 2019. Our systematic outline of the synthesis, photophysical properties, and examples of two-photon imaging applications will provide useful context for the future development of new naphthalene backbone-based two-photon probes.
Collapse
Affiliation(s)
- Jong Min An
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Sung Hyun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea. and Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea and Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, College of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea. and Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, College of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea and Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea and Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|