1
|
Liu L, Xie K, Wang Y, Wang H, Wang J, Zhuang Y, Zhang Y. Polyhedral oligomeric silsesquioxane-modulated mesoporous amorphous bimetallic organic frameworks for the efficient isolation of immunoglobulin G. Talanta 2025; 282:126949. [PMID: 39341058 DOI: 10.1016/j.talanta.2024.126949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
The efficient and accurate separation of immunoglobulin G (IgG) plays a vital role for disease diagnosis and therapy, but it is always hampered by the huge geometric size and complex structure of IgG. In this work, an amorphous Fe/Co bimetallic organic framework (denoted as PMOF-Fe/Co) is fabricated for IgG separation, with octa-carboxyl polyhedral oligomeric silsesquioxane (OCPOSS) as modulator for the first time. Benefiting from the rigid nanostructure and competitive coordination of OCPOSS, the aperture of PMOF-Fe/Co is enlarged to ∼20 nm along with the generation of enormous structural defects, which enables the accommodation of protein species with high molecular weights and large sizes. OCPOSS is also found exerting a positive impact on mediating the specific recognition and adsorption ability of PMOF-Fe/Co towards IgG through metal affinity, hydrophilic and hydrophobic interactions. Consequently, the multimode and multivalent affinity of PMOF-Fe/Co gives rise to an extraordinary adsorption capacity (2691.7 mg g-1) and satisfactory practical application performance. This study is convinced to provide a simple avenue for the efficient separation of specific large-sized proteins, as well as the engineering of abiotic affinity reagents with compositional and architectural complexity.
Collapse
Affiliation(s)
- Lan Liu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kai Xie
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuheng Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haoran Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinyi Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yuting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yue Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Wang K, Zhang H, Jin N, Zhou Y, Guo X, Zhong W, Li X, Li X, Zhang Y. Interfacial modification of recombinant protein for immunoglobulin G adsorption with spindle-shaped MOF as nano molecular containers. Talanta 2024; 280:126535. [PMID: 39121618 DOI: 10.1016/j.talanta.2024.126535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
Development of fresh solid phase extractant is critical for selective separation and purification of special proteins. Herein, we demonstrated a recombinant Staphylococcal Protein G (rSPG) with a His-tag modified the novel single-metal organic framework (rSPG@Ni-MOF-74). The proposed solid-phase extraction material possessed a uniform spindle-shaped structure, large surface area (709.60 m2 g-1) and pore volume (0.08 m3 g-1), high metal content (22.57 wt%), which facilitated the interaction between host and guest. As results, the composite displayed outstanding selective recognition and adsorption of IgG, due to synergistic effect of the binding ability of rSPG with the Fc region of IgG, maintained through hydrogen bonding and electrostatic attraction, as well as hydrophobic interaction. The adsorption performance and mechanism of rSPG@Ni-MOF-74 have been fully investigated. Additionally, the rSPG@Ni-MOF-74 composite could effectively separate IgG from serum obtained from healthy humans, with the purity of the separated IgG verified through SDS-PAGE analysis. Furthermore, LC-MS/MS analysis identified a high content of IgG (55.3 %) in the eluate from rSPG@Ni-MOF-74, suggesting the great potential of rSPG@Ni-MOF-74 in IgG separation and enrichment from complex matrix.
Collapse
Affiliation(s)
- Kai Wang
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Hongjin Zhang
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Nishan Jin
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Yutian Zhou
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Xinli Guo
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Wenbin Zhong
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Xin Li
- Department of Science and Technology, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Xuwen Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Yang Zhang
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China.
| |
Collapse
|
3
|
Cui Y, Yang X, Zhao N, Xin X, Han D, Yan H. Sensitive extraction of seven pesticide residues from environmental water with magnetic graphene oxide-based covalent organic framework. J Chromatogr A 2024; 1732:465209. [PMID: 39106665 DOI: 10.1016/j.chroma.2024.465209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024]
Abstract
The use of pesticides has increased with the development of agriculture. However, due to the trace content and the matrix's inherent complexity in environmental water, development of rapid and sensitive detection method present significant challenges in the analysis of pesticide residues. The study synthesized magnetic graphene oxide (MGO) by combining superparamagnetic nanoparticles with the easy modification of graphene oxide (GO). Covalent organic frameworks (COFs) were then modified to have a large specific surface area. Finally, magnetic graphene oxide-based covalent organic frameworks, namely MGO-COFs, were obtained with a spherical structure and used as magnetic solid-phase extraction materials, which was successfully used to determine the seven pesticide residues in environmental samples in conjunction with high performance liquid chromatography. The method has a wide linear range for the tested pesticides, with satisfactory correlation coefficients (R ≥ 0.099) and low detection limits (0.3-1.21 μg L-1). The correlation coefficients for all seven pesticides were high (R2 ≥ 0.9996). The spiked recoveries, exhibiting a range of 91.3 to 109 %, demonstrated that the developed MGO-COF-MSPE-HPLC-UV method is simple, efficient, and suitable for the analysis and detection of seven pesticide residues in environmental water.
Collapse
Affiliation(s)
- Yahan Cui
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China
| | - Xiaonan Yang
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China
| | - Niao Zhao
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China
| | - Xuelian Xin
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China.
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Wang J, Shen Y, Zhuang Y, Wang J, Zhang Y. Multimodal Affinity-Modulated Efficient Separation of Lysozyme with a Hierarchical MXene@MOF Hybrid Framework. Anal Chem 2024; 96:12102-12111. [PMID: 39001808 DOI: 10.1021/acs.analchem.4c02183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
The development of abiotic protein affinity adsorbents remains challenging for the accurate acquisition and analysis of specific protein species. Inspired by bacterial cell walls, a hierarchical hybrid framework is fabricated through the oriented growth of an Fe-based metal organic framework (MOF) on V2C MXene for the efficient separation of lysozyme (Lys). After directed evolution of adsorptive materials, the MXene@MOF composite rich in hydroxyl groups (termed as MX@MOF-DH) is found exerting exceptional affinity for Lys. Benefiting from hydrogen-bonding, coordination, and electrostatic interaction-mediated multimodal and multivalent affinity, MX@MOF-DH reveals rapid adsorption rate (5 min), superb enrichment factor (83.1), and favorable binding capacity (609.7 mg g-1), which outperforms other latest adsorbents. Moreover, femtomolar sensitivity is achieved even in the presence of high-abundant interfering proteins, as confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analysis. This work not only provides an efficient approach for selective enrichment of lysozyme but also paves an avenue to construct the protein affinity reagents for specific biological medicine and analysis applications.
Collapse
Affiliation(s)
- Jin Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yudan Shen
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinyi Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Liu Y, Lu X, Liu S, Li Y, He X, Chen L, Zhang Y. Electrospun Fiber Membrane with the Dual Affinity of Chelation and Covalent Interactions for the Efficient Enrichment of Glycoproteins. ACS APPLIED BIO MATERIALS 2024; 7:2499-2510. [PMID: 38517141 DOI: 10.1021/acsabm.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
As important biomarkers of many diseases, glycoproteins are of great significance to biomedical science. It is essential to develop efficient glycoprotein enrichment platforms and investigate their adsorption mechanism. In this work, a conspicuous enrichment strategy for glycoproteins was developed by using an electrospun fiber membrane wrapped with polydopamine (PDA) and modified with 3-aminophenylboronic acid and nickel ions, named PAN/DA@PDA@APBA/Ni. The enrichment characteristics of PAN/DA@PDA@APBA/Ni toward glycoproteins were explored through adsorption behavior. Thanks to the existence of two sites of interaction (metal ion chelation and boronate affinity), PAN/DA@PDA@APBA/Ni exhibited significant enrichment capacity for glycoproteins, ovalbumin (604.6 mg/g), and human immunoglobulin G (331.0 mg/g). The adsorption kinetic results of glycoprotein ovalbumin on PAN/DA@PDA@APBA/Ni conform to the pseudo-first-order kinetic model in the first adsorption stage, while the second half adsorption stage is more in line with the pseudo-second-order kinetic model. Moreover, the physical characteristics of PAN/DA@PDA@APBA/Ni and subsequent adsorption experiments on electrospun fiber modified with only phenylboronic acid or nickel ions both confirmed two sites of interaction (metal ion chelation and boronate affinity, respectively). Furthermore, a stepwise elution method with dual-affinity interaction was designed and successfully applied to enrich glycoproteins in real biological samples. This work provides an idea for sample pretreatment, especially for the design of dual-affinity materials in glycoproteins enrichment.
Collapse
Affiliation(s)
- Yaqi Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xing Lu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shiling Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yijun Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China
| | - Xiwen He
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Langxing Chen
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yukui Zhang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| |
Collapse
|
6
|
Shahin R, Yousefi M, Ziyadi H, Bikhof M, Hekmati M. pH-Responsive and magnetic Fe3O4@UiO-66-NH2@PEI nanocomposite as drug nanocarrier: Loading and release study of Imatinib. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Chi Z, Wu X, Zhang Q, Zhai F, Xu Z, Zhang D, Chen Q. Titanium-based metal-organic framework MIL-125(Ti) for the highly selective isolation and purification of immunoglobulin G from human serum. J Sep Sci 2022; 45:3754-3762. [PMID: 35933591 DOI: 10.1002/jssc.202200357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022]
Abstract
Titanium-based metal-organic framework MIL-125(Ti) was synthesized by the hydrothermal method of terephthalic acid and tetra butyl titanate in N-N dimethylformamide and methanol. MIL-125(Ti) was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, nitrogen adsorption-desorption, energy-dispersive X-ray spectroscopy, zeta potential, scanning electron microscope and transmission electron microscopy. The results showed MIL-125(Ti) could be used as a potential adsorbent for protein separation and purification due to the high specific surface area, high stability and strong hydrophobicity. As a result, MIL-125(Ti) had adsorption selectivity for immunoglobulin G, which was due to hydrogen bond between MIL-125(Ti) and protein. At pH 8.0, the maximum adsorption efficiency of 0.25 mg MIL-125(Ti) for 300 μL 100 μg mL-1 immunoglobulin G was 98.3%, and its maximum adsorption capacity was 232.56 mg g-1 . The elution efficiency of immunoglobulin G was 92.4% by 0.1% SDS. SDS-PAGE result demonstrated the successful isolation of highly purified immunoglobulin G from the human serum. Therefore, a new method of separation and purification of immunoglobulin G in human serum using titanium-based metal-organic framework MIL-125(Ti) as a solid-phase adsorbent was established, which broadened the application scope of metal-organic frameworks. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zixin Chi
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Xi Wu
- Liaoning University, Shenyang, 110036, People's Republic of China
| | - Qiqi Zhang
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Fengyang Zhai
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Zesheng Xu
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Dandan Zhang
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Qing Chen
- Shenyang Medical College, Shenyang, 110034, People's Republic of China
| |
Collapse
|
8
|
Emerging affinity ligands and support materials for the enrichment of monoclonal antibodies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Hu Z, Chen Z, Chen X, Wang J. Advances in the adsorption/enrichment of proteins/peptides by metal-organic frameworks-affinity adsorbents. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Napolitano-Tabares PI, Gutiérrez-Serpa A, Jiménez-Abizanda AI, Jiménez-Moreno F, Pasán J, Pino V. Hybrid Materials Formed with Green Metal-Organic Frameworks and Polystyrene as Sorbents in Dispersive Micro-Solid-Phase Extraction for Determining Personal Care Products in Micellar Cosmetics. Molecules 2022; 27:813. [PMID: 35164078 PMCID: PMC8838677 DOI: 10.3390/molecules27030813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Hybrid materials based on polystyrene (PS) and green metal-organic frameworks (MOFs) were synthesized, characterized, and evaluated as potential sorbents in dispersive micro-solid-phase extraction (µ-dSPE). Among the resulting materials, the hybrid PS/DUT-67(Zr) was selected as the adequate extraction material for the monitoring of six personal care products in micellar cosmetic samples, combining the µ-dSPE method with ultra-high performance liquid chromatography (UHPLC) coupled to ultraviolet/visible detection (UV/Vis). Univariate studies and a factorial design were performed in the optimization of the microextraction procedure. The compromise optimum extraction conditions included 20 mg of PS/DUT-67(Zr) for 10 mL of sample, 2 min of extraction time, and two desorption steps using 100 µL of acetonitrile and 5 min assisted by vortex in each one. The validated μ-dSPE-UHPLC-UV/Vis method presented limits of detection and quantification down to 3.00 and 10.0 μg·L-1, respectively. The inter-day precision values were lower than 23.5 and 21.2% for concentration levels of 75 μg·L-1 and 650 μg·L-1, respectively. The hydrophobicity of the resulting PS/DUT-67(Zr) material was crucial for the improvement of its extraction capacity in comparison with its unitary components, showing the advantages of combining MOFs with other materials, getting new sorbents with interesting properties.
Collapse
Affiliation(s)
- Patricia I. Napolitano-Tabares
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
| | - Adrián Gutiérrez-Serpa
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
- Unidad de Investigación de Bioanalítica y Medioambiente, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), 38206 Tenerife, Spain
| | - Ana I. Jiménez-Abizanda
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
| | - Francisco Jiménez-Moreno
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Inorgánica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain
| | - Verónica Pino
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
- Unidad de Investigación de Bioanalítica y Medioambiente, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), 38206 Tenerife, Spain
| |
Collapse
|
11
|
Guo B, Tong Y, Sun B, Zhang B, Chen X, Bi S, Tian M. Metal oxide-based macroporous ordered double affinity molecularly imprinted polymer for specific separation and enrichment of glycoprotein from food samples: a co-modification of DMSA and boronate affinity. Mikrochim Acta 2022; 189:43. [PMID: 34978614 DOI: 10.1007/s00604-021-05155-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023]
Abstract
Metal oxide-based macroporous ordered double affinity molecularly imprinted polymers (D-MIPs) were developed as solid phase extraction (SPE) adsorbents for the specific identification of ovalbumin (OVA) under physiological pH conditions prior to ultraviolet visible (UV-vis) spectrophotometric detection. Herein, macroporous alumina (MA) was used as a matrix; dimercaptosuccinic acid (DMSA) and 3-aminophenylboric acid (APBA) were employed as dual-functional monomers; APBA is a self-polymerizing monomer. The effects of synthesis conditions, SPE conditions as well as selectivity, reproducibility, and reusability were studied. The co-modification of DMSA and boronate affinity renders the adsorbent exhibiting a high adsorption capacity (114.4 mg g-1) and short equilibrium time (30 min). The surface imprinting technology causes the adsorbent to have high selectivity towards OVA. The OVA recovery range is 91.1-99.6%. This study provides a promising method for the enrichment of OVA and other cis-diol-containing analytes in complex biological samples. A novel metal oxide-based macroporous ordered nanoparticle with a combination of DMSA and boronate affinity was successfully prepared for specific separation and enrichment of glycoprotein from complex biological samples.
Collapse
Affiliation(s)
- Bailin Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Yukui Tong
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Baodong Sun
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China
| | - Baoyue Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Xue Chen
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Sheng Bi
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
12
|
Zhang B, Chen X, He J, Guo B, Bi S, Zhang F, Tian M. Preparation of a boronate affinity-functionalized metal–organic framework material for selective recognition and separation of glycoproteins at physiological pH. NEW J CHEM 2022. [DOI: 10.1039/d2nj01182d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A boronate affinity functionalized metal–organic framework material was successfully prepared for the efficient and selective extraction of OVA glycoprotein from egg white samples and protein powder.
Collapse
Affiliation(s)
- Baoyue Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Xue Chen
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Jianghua He
- Ruyuan Hec Pharm Co. Ltd, Shaoguan 512700, Guangdong Province, P. R. China
| | - Bailin Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Sheng Bi
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
13
|
Zhu C, Wu J, Jin X, Yan Y, Ding CF, Tang K, Zhang Q. Graphene functionalized with structurally complementary amino acids for sensitive recognition of N-linked glycopeptides. J Chromatogr A 2021; 1655:462505. [PMID: 34500222 DOI: 10.1016/j.chroma.2021.462505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/05/2023]
Abstract
Herein, a hydrophilic graphene composite functionalized with glutathione (GSH) and L(+)-Cysteine (Cys) was prepared via a simple and fast synthesis route, which was named G@S@Au@GC. The combination attack with two different zwitterionic polymers resulted in enhanced adsorption sites for glycopeptides. The obtained G@S@Au@GC exhibited excellent performance on a low limit of detection (0.2 fmol), a high selectivity (HRP: bovine serum albumin = 1:1500), a good load capacity (250 μg•mg-1) and recovery rate (93%), which was also evaluated with IgG. Subsequently, 60 glycopeptides from complex biological sample (human saliva) were identified by Nano-LC-MS/MS. The advantages of combination attack, low-cost, simple and fast synthesis, and superior enrichment performance make G@S@Au@GC composite a bright future on glycoproteomics analysis and related diseases.
Collapse
Affiliation(s)
- Canhong Zhu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Jiani Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Xueting Jin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China.
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Qiaohong Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
14
|
Guo B, Bi S, Zhang B, Tong Y, Chen X, Tian M. Synthesis of nanoparticles with a combination of metal chelation and molecular imprinting for efficient and selective extraction of glycoprotein. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Zadeh Mehrizi T, Mousavi Hosseini K. An overview on the investigation of nanomaterials' effect on plasma components: immunoglobulins and coagulation factor VIII, 2010-2020 review. NANOSCALE ADVANCES 2021; 3:3730-3745. [PMID: 36133015 PMCID: PMC9419877 DOI: 10.1039/d1na00119a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/16/2021] [Indexed: 05/04/2023]
Abstract
FVIII and immunoglobulins (Igs) are the most prominent plasma proteins, which play a vital role in plasma hemostasis. These proteins have been implemented frequently in protein therapy. Therefore, their maintenance, durability, and stability are highly essential. Herein, various approaches to improve protein functions have been investigated, such as using recombinant protein replacement. In comparison, advances in nanotechnology have provided adequate context to boost biomaterial utilization. In this regard, the applications of various nanoparticles such as polymeric nanomaterials (PEG and PLGA), metal nanoparticles, dendrimers, and lipid based nanomaterials (liposomes and lipid nanoparticles) in stability and the functional improvement of antibodies and coagulation factor VIII (FVIII) have been reviewed from 2010 to 2020. Reviewing related articles has shown that not only can nanomaterials adequately protect the structure of proteins, but have also improved proteins' functions in some cases. For example, the high rate of FVIII instability has been successfully enhanced by bio-PEGylation. Also, utilizing PEGylated liposomes, using the PEG-lip technique for coating nanostructures, leads to FIIIV half-life prolongation. Hence, PEGylation had most impact on the stability of FVIII. Likewise, PEG-coated liposome nano-carriers also presented such a good effect on stability improvements for FVIII due to their ability to tune the immune system by reducing FVIII immunogenicity. Similarly, Ig PEGylation and conjugation to magnetic nanoparticles resulted in increased half-life and better purification of Igs, respectively, without any loss in structural or functional features. Consequently, metal-organic frameworks and recent hybrid systems have been introduced as promising nanomaterials in biomedical applications. As far as we know, this is the first study in this field, which considers the applications of nanoparticles for improving the storage and stability of antibodies and coagulation FVIII.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine Tehran Iran +989338606292
| | - Kamran Mousavi Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine Tehran Iran +989338606292
| |
Collapse
|
16
|
Miyazaki T, Nakagawa Y, Cabral H. Strategies for ligand-installed nanocarriers. HANDBOOK OF NANOTECHNOLOGY APPLICATIONS 2021:633-655. [DOI: 10.1016/b978-0-12-821506-7.00024-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Hu Z, Meng J, Wang X, Li W, Chen X. Tailoring the Surface Properties of Co-based Metal-Organic Frameworks for Highly Efficient and Selective Enrichment of Immunoglobulin G. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55453-55459. [PMID: 33231420 DOI: 10.1021/acsami.0c16821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The high tunability of metal-organic frameworks (MOFs) provides attractive flexibility to tailor their surface properties for practical demands. Here we report the regulation of the surface properties (hydrophilicity and charge characteristics) of Co-based MOFs by exploiting different organic building units and tailor them as efficient adsorbents for specific protein enrichment. Compared with the pristine Co-based MOF (Co-MOF) and the aminated MOF (Co-MOF-NH2), the MOF decorated with abundant hydroxyl groups (Co-MOF-OH) exhibits superior adsorption selectivity and enriched efficiency toward immunoglobulin G (IgG) in the physiological state (pH 7.4) by taking advantage of the favorable hydrogen-bonding interactions and electrostatic force between IgG and Co-MOF-OH. The enrichment factor for IgG is high, up to 97.7 for enriching IgG from the IgG/human serum albumin mixture with a mass ratio of 1:50, and circular dichroism indicates that the enrichment process poses no influence on the protein structure. Moreover, Co-MOF-OH proves its practicability in complex biological samples by the selective extraction of IgG from complex human serum samples.
Collapse
Affiliation(s)
- Zhengjie Hu
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jie Meng
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Ximing Wang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Weitao Li
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xuwei Chen
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|