1
|
Salmani-Zarchi H, Borghei YS, Nikkhah M. A turn-off fluorimetric -aptasensor for early detection of apoptosis inside the cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122933. [PMID: 37267835 DOI: 10.1016/j.saa.2023.122933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
To detect cytochrome c (Cyt c) as an important biomarker of apoptosis inside the cells, a simple, label-free, fluorometric detection method has been presented. For this purpose, an aptamer/gold nanocluster probe (Aptamer@AuNCs) was produced which could specifically bind to Cyt c leading to fluorescence quenching of AuNCs. The developed aptasensor showed two linear ranges of 1-80 μM and 100-1000 μM and a detection limit of 0.77 μM and 297.5 μM, respectively. This platform was successfully used to assay Cyt c release inside the apoptotic cells and their cell lysate. Aptamer@AuNC due to its enzyme-like properties could replace antibodies in Cyt c detection by conventional blotting techniques.
Collapse
Affiliation(s)
- Hamed Salmani-Zarchi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran
| | - Yasaman-Sadat Borghei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran; Center for Bioscience & Technology, Institute for Convergence Science & Technology, Sharif University of Technology, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran; Department of Sensor and Biosensor, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, P.O. Box: 14115-336, Tehran, Iran.
| |
Collapse
|
2
|
Wu T, Chen K, Lai W, Zhou H, Wen X, Chan HF, Li M, Wang H, Tao Y. Bovine serum albumin-gold nanoclusters protein corona stabilized polystyrene nanoparticles as dual-color fluorescent nanoprobes for breast cancer detection. Biosens Bioelectron 2022; 215:114575. [PMID: 35868122 DOI: 10.1016/j.bios.2022.114575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Breast cancer is the most prevalent malignancy and the first leading cause of cancer-related mortality among the female population worldwide. Approaches for precise and reliable detection of breast cancer cells, particularly in the nascent state, are desperately needed for elevating the survival rate of patients bearing the breast tumor. In this work, we successfully performed the sensitive, precise, and reliable breast cancer cell detection using facilely fabricated bovine serum albumin-gold nanocluster (BSA-AuNCs) protein corona stabilized, epithelial cell adhesion molecule (EpCAM) aptamer linked fluorescent polystyrene nanoparticle (PS NP), termed as PS-BSA-AuNCs-Apt. The rapidly adsorbed BSA-AuNCs hard protein corona without complicated covalent conjugation not only imparted excellent colloidal stability to the PS nanoparticles, but also offered numerous active anchors for the targeted EpCAM aptamers to locate. With the remarkable aid of the aptamers specifically targeting the EpCAM-positive breast cancer cells, the PS-BSA-AuNCs-Apt emitted strong and photostable dual-color fluorescent signals for precise and reliable cancer cell detection by overcoming the false signals. The specific identification potency of the PS-BSA-AuNCs-Apt system was further verified by successfully detecting the xenografted breast tumor tissue. Notably, to the best of our knowledge, the protein corona formed nanoprobes was exploited for direct tumor cell and tissue detection with high efficacy for the first time, demonstrating their promising potential in clinical tumor detection.
Collapse
Affiliation(s)
- Tingting Wu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Keying Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Wenjie Lai
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Huicong Zhou
- College of Science, Changchun Institute of Technology, Changchun, 130012, China
| | - Xingqiao Wen
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, 510630, China.
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Borghei YS, Hosseinkhani S, Ganjali MR. "Plasmonic Nanomaterials": An emerging avenue in biomedical and biomedical engineering opportunities. J Adv Res 2022; 39:61-71. [PMID: 35777917 PMCID: PMC9263747 DOI: 10.1016/j.jare.2021.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Plasmonic nanomaterials asnoble metal-based materials have unique optical characteristic upon exposure to incident light with an appropriate wavelength. Today, generated plasmon by nanoparticles has receivedincreasingattention in nanomedicine; from diagnosis, tissue and tumor imaging to therapeutic and biomedical engineering. AIM OF REVIEW Due to rapid growing of knowledge in the inorganic nanomaterial field, this paper aims to be a comprehensive and authoritative, critical, and broad interest to the scientific community. Here, we introduce basic physicochemical properties of plasmonic nanoparticles and their applications in biomedical and tissue engineering The first part of each division explain the basic physico-chemical properties of each nanomaterial with a graphical abstract. In the second part, concepts by describing classic examples taken from the biomedical and biomedical engineering literature are illustrated. The selected case studies are intended to give an overview of the different systems and mechanisms utilized in nanomedicine. KEY SCIENTIFIC CONCEPTS OF REVIEW In this communication, we have tried to introduce the needed concepts of plasmonic nanomaterials and their implication in a particular part of biomedical over the last 20 years. Moreover, in each part with insist on limitations, a perspective is presented which can guide a researcher how they can develop or modify new scaffolds for biomedical engineering.
Collapse
Affiliation(s)
- Yasaman-Sadat Borghei
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Dong C, Song C, Chao J, Xiong J, Fang X, Zhang J, Zhu Y, Zhang Y, Wang L. Multi-armed tetrahedral DNA probes for visualizing the whole-course of cell apoptosis by simultaneously fluorescence imaging intracellular cytochrome c and telomerase. Biosens Bioelectron 2022; 205:114059. [DOI: 10.1016/j.bios.2022.114059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
|
5
|
Bio-synthesis of a Functionalized Whey Proteins Theranostic Nanoprobe with Cancer-specific cytotoxicity and as a Live/dead cell imaging probe. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Wei Z, Yu Y, Hu S, Yi X, Wang J. Bifunctional Diblock DNA-Mediated Synthesis of Nanoflower-Shaped Photothermal Nanozymes for a Highly Sensitive Colorimetric Assay of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16801-16811. [PMID: 33788550 DOI: 10.1021/acsami.0c21109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The activity of a nanozyme is closely related to its surface area-to-volume ratio and the surrounding temperature. To acquire highly active nanozymes, one-pot metallization-like synthesis of novel nanoflower-shaped photothermal nanostructures was conducted using polyadenine-containing diblock DNA as the scaffold. The nanoflower-shaped structures with a high surface area-to-volume ratio and photothermal performance exhibited excellent peroxidase-mimicking activity, and the biorecognition capability was retained by the capping agent of diblock DNA. The functionalized nanostructures were used for a proof-of-concept colorimetric assay of cancer cells in vitro. Upon incorporation of 808 nm laser irradiation, high sensitivity and selectivity for the cancer cell assay were achieved with the lowest detection level of 10 cells/mL. Relative to spherical gold nanostructures, the nanoflower-shaped photothermal nanozyme exhibited higher assay sensitivity, paving the way for the construction of nanozyme-based colorimetric sensors for point-of-care testing.
Collapse
Affiliation(s)
- Zhaohui Wei
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yuefan Yu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xinyao Yi
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
7
|
Piovarci I, Melikishvili S, Tatarko M, Hianik T, Thompson M. Detection of Sub-Nanomolar Concentration of Trypsin by Thickness-Shear Mode Acoustic Biosensor and Spectrophotometry. BIOSENSORS 2021; 11:117. [PMID: 33920444 PMCID: PMC8070231 DOI: 10.3390/bios11040117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
The determination of protease activity is very important for disease diagnosis, drug development, and quality and safety assurance for dairy products. Therefore, the development of low-cost and sensitive methods for assessing protease activity is crucial. We report two approaches for monitoring protease activity: in a volume and at surface, via colorimetric and acoustic wave-based biosensors operated in the thickness-shear mode (TSM), respectively. The TSM sensor was based on a β-casein substrate immobilized on a piezoelectric quartz crystal transducer. After an enzymatic reaction with trypsin, it cleaved the surface-bound β-casein, which increased the resonant frequency of the crystal. The limit of detection (LOD) was 0.48 ± 0.08 nM. A label-free colorimetric assay for trypsin detection has also been performed using β-casein and 6-mercaptohexanol (MCH) functionalized gold nanoparticles (AuNPs/MCH-β-casein). Due to the trypsin cleavage of β-casein, the gold nanoparticles lost shelter, and MCH increased the attractive force between the modified AuNPs. Consequently, AuNPs aggregated, and the red shift of the absorption spectra was observed. Spectrophotometric assay enabled an LOD of 0.42 ± 0.03 nM. The Michaelis-Menten constant, KM, for reverse enzyme reaction has also been estimated by both methods. This value for the colorimetric assay (0.56 ± 0.10 nM) is lower in comparison with those for the TSM sensor (0.92 ± 0.44 nM). This is likely due to the better access of the trypsin to the β-casein substrate at the surface of AuNPs in comparison with those at the TSM transducer.
Collapse
Affiliation(s)
- Ivan Piovarci
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 84248 Bratislava, Slovakia; (I.P.); (S.M.); (M.T.)
| | - Sopio Melikishvili
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 84248 Bratislava, Slovakia; (I.P.); (S.M.); (M.T.)
| | - Marek Tatarko
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 84248 Bratislava, Slovakia; (I.P.); (S.M.); (M.T.)
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 84248 Bratislava, Slovakia; (I.P.); (S.M.); (M.T.)
| | - Michael Thompson
- Lash Miller Laboratories, Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|