1
|
Zhou H, Li J, Li H, Liu H, Wang X, Du X. Controlled construction of 2D hierarchical core-shell ZnO/MnO 2 nanosheets on Nitinol fiber with enhanced adsorption performance for selective solid-phase microextraction of trace polycyclic aromatic hydrocarbons in water samples. Anal Chim Acta 2024; 1298:342402. [PMID: 38462331 DOI: 10.1016/j.aca.2024.342402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are an important class of potentially toxic persistent organic pollutants in environmental water. Their concentrations are usually too low to allow for direct determination with analytical instruments, and the preconcentration is required prior to instrumental analysis. Solid phase microextraction (SPME) is considered as a high-performance green sample preparation technique for volatile and non-volatile organic compounds due to its high enrichment factor. In fact, the nature of SPME coatings governs the adsorption performance. Therefore, more efforts have devoted to the controlled construction of novel long-life SPME fibers with enhanced adsorption performance and improved adsorption selectivity. RESULTS 2D hierarchical core-shell ZnO/MnO2 nanosheets (NSs) were constructed on a Nitinol (NiTi) fiber substrate by layer-by-layer assembly for enhanced and selective SPME of PAHs. Firstly, hexagonal ZnO NSs were electrodeposited on the NiTi substrate. Subsequently smaller secondary MnO2 NSs were uniformly grown on the surface of ZnO NSs by a facile hydrothermal oxidation process. ZnO NSs were well protected by the chemically stable MnO2 shell, making the coating highly durable and efficient for SPME application. Meanwhile, the ZnO/MnO2 NSs coating demonstrated superior adsorption performance for PAHs. After the optimization of SPME conditions, the proposed SPME-HPLC-UV method exhibited good analytical performance for preconcentrating and determining trace PAHs with wide linear ranges (0.03-200 μg L-1) and low LODs (0.005-0.112 μg L-1) as well as good repeatability (1.4%-6.9%) and fiber-to-fiber reproducibility (5.3%-7.1%). Moreover, the proposed method showed good precision and recovery in the preconcentration and determination of target PAHs in real water samples. SIGNIFICANCE As compared with representative commercially available fibers, the NiTi@ZnO/MnO2 NSs fiber showed enhanced adsorption efficiency and improved adsorption selectivity for PAHs. The constructed fiber can be used as an alternative to commercial fibers for the adsorption and preconcentration of target PAHs in the environmental water samples. Moreover, the preparation strategy is expected to provide new insights into the precisely controlled construction of the efficient and stable core-shell bimetallic oxide nanostructures on the superielastic NiTi-based fibers.
Collapse
Affiliation(s)
- Hua Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Jiayu Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Huirong Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Haixia Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Zhu S, Mu M, Gao Y, Wang Y, Lu M. Three-dimensional rose-like zinc oxide fiber coating for simultaneous extraction of polychlorinated biphenyls and polycyclic aromatic hydrocarbons by headspace solid phase microextraction. J Chromatogr A 2023; 1711:464450. [PMID: 37871503 DOI: 10.1016/j.chroma.2023.464450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
The three-dimensional (3D) rose-like zinc oxide (ZnO) material was prepared by a simple one-step CTAB-assisted hydrothermal strategy and used as a headspace solid-phase microextraction (HS-SPME) coating. Polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed by gas chromatography with flame ionization detector (GC-FID), and conclusively applied to ultrasensitive detection in lake and river water. Compared with one-dimensional (1D) pencil-like ZnO, the layer-by-layer petal-like structure could fully expose mass adsorption sites on the surface, which could significantly improve the adsorption. The enrichment factors with 7535-8595 for PCBs and 3855-7320 for PAHs were achieved. The established method provided a satisfactory linear range (0.005-30 ng·mL-1), coefficient (R2 > 0.9978), ultra-low limit detection (1-3 pg·mL-1), and long service life (≥ 150 times). The recoveries of 83.42-120.86 % were obtained in the real detection application of lake and river water. This work demonstrated that 3D rose-like ZnO with low cost, simple synthesis, fast extraction ability and high enrichment performance was an ideal coating material, which was hoped to enrich other compounds with similar structures with PCBs and PAHs.
Collapse
Affiliation(s)
- Shiping Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Mengyao Mu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Yanmei Gao
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Youmei Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
3
|
Long A, Liu H, Xu S, Feng S, Shuai Q, Hu S. Polyacrylic Acid Functionalized Biomass-Derived Carbon Skeleton with Highly Porous Hierarchical Structures for Efficient Solid-Phase Microextraction of Volatile Halogenated Hydrocarbons. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4376. [PMID: 36558229 PMCID: PMC9784554 DOI: 10.3390/nano12244376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In this study, polyacrylic acid functionalized N-doped porous carbon derived from shaddock peels (PAA/N-SPCs) was fabricated and used as a solid-phase microextraction (SPME) coating for capturing and determining volatile halogenated hydrocarbons (VHCs) from water. Characterizations results demonstrated that the PAA/N-SPCs presented a highly meso/macro-porous hierarchical structure consisting of a carbon skeleton. The introduction of PAA promoted the formation of polar chemical groups on the carbon skeleton. Consequently, large specific surface area, highly hierarchical structures, and abundant chemical groups endowed the PAA/N-SPCs, which exhibited superior SPME capacities for VHCs in comparison to pristine N-SPCs and commercial SPME coatings. Under the optimum extraction conditions, the proposed analytical method presented wide linearity in the concentration range of 0.5-50 ng mL-1, excellent reproducibility with relative standard deviations of 5.8%-7.2%, and low limits of detection varying from 0.0005 to 0.0086 ng mL-1. Finally, the proposed method was applied to analyze VHCs from real water samples and observed satisfactory recoveries ranging from 75% to 116%. This study proposed a novel functionalized porous carbon skeleton as SPME coating for analyzing pollutants from environmental samples.
Collapse
Affiliation(s)
- Anying Long
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- 113 Geological Brigade, Bureau of Geology and Mineral Exploration and Development Guizhou Province, Liupanshui 553000, China
| | - Hailin Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qin Shuai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shenghong Hu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
4
|
Lenti L, Nartea A, Orhotohwo OL, Pacetti D, Fiorini D. Development and Validation of a New GC-FID Method for the Determination of Short and Medium Chain Free Fatty Acids in Wine. Molecules 2022; 27:8195. [PMID: 36500286 PMCID: PMC9740170 DOI: 10.3390/molecules27238195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
A new analytical method for the determination of six volatile short and medium-chain fatty acids (acetic, propionic, isobutyric, isovaleric, hexanoic, and octanoic acids) through liquid-liquid extraction with diethyl ether, followed by GC-FID analysis, was developed and validated. The extraction conditions were optimized by evaluating the effect of the number of extractions (1 to 3) and the effect of the addition of salts (NaH2PO4, (NH4)2SO4, NaCl, (NH4)2SO4/NaH2PO4) to increase the concentration of the analytes in the ethyl ether phase. Results showed that a single extraction allows obtaining the highest sensitivity (due to the impossibility of evaporating the solvent to avoid losses of the analytes). The use of salting out agents, in particular, NaH2PO4, showed an important increase in the extraction extent, on average, 1.5 times higher as compared to the extraction performed without salt. The proposed method is rapid, requiring a total of 30 min for preparation and analysis, and it makes use of small amounts of sample (500 µL) and solvent (400 µL). The method was then applied to quantify the analytes in 5 white wines and 5 red wines, allowing to highlight some clear differences between red and white wines, with the red ones having a significantly higher amount of acetic acid (715.7 ± 142.3 mg/L in red wines and 351.5 ± 21.2 mg/L in white wines) and the white wines having a significantly higher amount of hexanoic and octanoic acid (6.1 ± 3.0 mg/L and 2.6 ± 0.8 mg/L, respectively, are the mean concentrations in white wines, and 4.7 ± 0.8 and 2.4 ± 0.4 mg/L, respectively, are the mean concentrations in red wines).
Collapse
Affiliation(s)
- Lucia Lenti
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy
| | - Ancuta Nartea
- Department of Agricultural, Food and Environmental Science, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Oghenetega Lois Orhotohwo
- Department of Agricultural, Food and Environmental Science, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Deborah Pacetti
- Department of Agricultural, Food and Environmental Science, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy
| |
Collapse
|
5
|
High-throughput profiling volatiles in edible oils by cooling assisted solid-phase microextraction technique for sensitive discrimination of edible oils adulteration. Anal Chim Acta 2022; 1221:340159. [DOI: 10.1016/j.aca.2022.340159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/19/2023]
|
6
|
Wang Z, Liu H, Shao J, Li Z, Zhang H, Sun C, Pan G, Yang X. AuPd nanoparticles functionalized core-shell Co 3O 4/ZnO@ZnO for ultra-sensitive toluene detection. NANOTECHNOLOGY 2022; 33:365501. [PMID: 35636397 DOI: 10.1088/1361-6528/ac7475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
In this work, core-shell AuPd nanoparticles (NPs) sensitized Co3O4/ZnO@ZnO ellipsoid nanoparticles was successfully synthesized via a simple liquid phase synthesis method. SEM and TEM characterization results showed that the as-prepared samples have core-shell ellipsoid morphology and the size of the nanoparticles were uniform. Systematic gas sensing characterization was carried out to obtain the gas sensing property of AuPd NPs decorated Co3O4/ZnO@ZnO. It was found that the gas sensing property could be significantly enhanced after noble metal decoration with Au, Pd and AuPd NPs, respectively. The optimal gas sensing performance was achieved by AuPd NPs functionalized Co3O4/ZnO@ZnO based gas sensor. The maximum response reached 256-100 ppm toluene at 250 °C, which is 50 °C lower than pure ZnO. The detection limit of AuPd functionalized Co3O4/ZnO@ZnO was as low as 100 ppb. The enhanced sensing mechanism was mainly attributed to the synergistic effect of Au and Pd, which was detailly discussed in gas sensing mechanism part.
Collapse
Affiliation(s)
- Ziyan Wang
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Hongyan Liu
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Junkai Shao
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Zhenhua Li
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Hao Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Caixuan Sun
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Guofeng Pan
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Xueli Yang
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, People's Republic of China
| |
Collapse
|
7
|
Xu S, Liu H, Long A, Li H, Chen C, Feng S, Fan J. Carbon Dot-Decorated Graphite Carbon Nitride Composites for Enhanced Solid-Phase Microextraction of Chlorobenzenes from Water. NANOMATERIALS 2022; 12:nano12030335. [PMID: 35159684 PMCID: PMC8838722 DOI: 10.3390/nano12030335] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/25/2023]
Abstract
In this work, carbon dot-decorated graphite carbon nitride composites (CDs/g-C3N4) were synthesized and innovatively used as a SPME coating for the sensitive determination of chlorobenzenes (CBs) from water samples, coupled with gas chromatography-mass spectrometry. The CDs/g-C3N4 coating presented superior extraction performance in comparison to pristine g-C3N4, owing to the enhancement of active groups by CDs. The extraction capacities of as-prepared SPME coatings are higher than those of commercial coatings due to the functions of nitrogen-containing and oxygen-containing group binding, π-π stacking, and hydrophobic interactions. Under optimized conditions, the proposed method exhibits a wide linearity range (0.25-2500 ng L-1), extremely low detection of limits (0.002-0.086 ng L-1), and excellent precision, with relative standard deviations of 5.3-9.7% for a single fiber and 7.5-12.6% for five fibers. Finally, the proposed method was successfully applied for the analysis of CBs from real river water samples, with spiked recoveries ranging from 73.4 to 109.1%. This study developed a novel and efficient SPME coating material for extracting organic pollutants from environmental samples.
Collapse
Affiliation(s)
- Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China;
- Correspondence: (S.X.); (S.F.)
| | - Hailin Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
| | - Anying Long
- 113 Geological Brigade, Guizhou Bureau of Geology and Mineral Resources, Liupanshui 553000, China;
| | - Huimin Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
| | - Changpo Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
- Correspondence: (S.X.); (S.F.)
| | - Jing Fan
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China;
| |
Collapse
|
8
|
Core-shell structured Fe 2O 3/CeO 2@MnO 2 microspheres with abundant surface oxygen for sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons from water. Mikrochim Acta 2021; 188:337. [PMID: 34510313 DOI: 10.1007/s00604-021-05004-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Core-shell structured Fe2O3/CeO2@MnO2 microspheres were fabricated and used as solid-phase microextraction coating for determination of polycyclic aromatic hydrocarbons (PAHs) in water samples. XPS spectra demonstrated the generation of abundant surface oxygen on Fe2O3/CeO2@MnO2 microspheres, which provided binding sites for enhancement of analyte extraction. Under optimized conditions, the proposed method presented good linearity in the concentration range 0.04-100 ng mL-1, with low limits of detection varying from 0.38 to 3.57 ng L-1 for eight PAHs. Relative standard deviations for a single fiber and five batches of fibers were in the ranges of 4.1-8.2% and 7.1-11.4%, respectively. The proposed method was successfully used for determination of PAHs in real river water samples with recoveries ranging from 87.1 to 115.9%. The proposed method using as-prepared Fe2O3/CeO2@MnO2 microspheres as SPME coating exhibit significant potential for real sample analysis due to its excellent reproducibility, high sensitivity, and good linearity.
Collapse
|
9
|
Kamalabadi M, Razavi-Mashouf MM, Madrakian T, Ghoorchian A, Afkhami A. Electrochemically controlled solid phase microextraction based on nanostructured polypyrrole film for selective extraction of sunset yellow in food samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02259-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|