1
|
Rozaini MNH, Semail NF, Zango ZU, Lim JW, Yahaya N, Setiabudi HD, Tong WY, Shamsuddin R, Chan YJ, Khoo KS, Suliman M, Kiatkittipong W. Advanced adsorptions of non-steroidal anti-inflammatory drugs from environmental waters in improving offline and online preconcentration techniques: An analytical review. J Taiwan Inst Chem Eng 2025; 166:105020. [DOI: 10.1016/j.jtice.2023.105020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Meng Q, Wang Y, Long Y, Wang Q, Gao Y, Tian J, Wu C, Xie B. The New Delhi metallo-β-lactamase-1 biosensor rapidly and accurately detected antibiotic plasma concentrations in cefuroxime-treated patients. Int J Antimicrob Agents 2024; 64:107229. [PMID: 38823493 DOI: 10.1016/j.ijantimicag.2024.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVES Therapeutic drug monitoring (TDM) of β-lactam antibiotics in critically ill patients may benefit dose optimisation, thus improving therapeutic outcomes. However, rapidly and accurately detecting these antibiotics in blood remains a challenge. This research group recently developed a thermometric biosensor called the New Delhi metallo-β-lactamase-1 (NDM-1) biosensor, which detects multiple classes of β-lactam antibiotics in spiked plasma samples. METHODS This study assessed the NDM-1 biosensor's effectiveness in detecting plasma concentrations of β-lactam antibiotics in treated patients. Seven patients receiving cefuroxime were studied. Plasma samples collected pre- and post-antibiotic treatment were analysed using the NDM-1 biosensor and compared with liquid chromatography coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS The biosensor detected plasma samples without dilution, and a brief pre-treatment using a polyvinylidene fluoride filter significantly lowered matrix effects, reducing the running time to 5-8 minutes per sample. The assay's linear range for cefuroxime (6.25-200 mg/L) covered target concentrations during the trough phase of pharmacokinetics in critically ill patients. The pharmacokinetic properties of cefuroxime in treated patients determined by the NDM-1 biosensor and the UPLC-MS/MS were comparable, and the cefuroxime plasma concentrations measured by the two methods showed statistically good consistency. CONCLUSION These data demonstrate that the NDM-1 biosensor assay is a fast, sensitive, and accurate method for detecting cefuroxime plasma concentrations in treated patients and highlights the NDM-1 biosensor as a promising tool for on-site TDM of β-lactam antibiotics in critically ill patients.
Collapse
Affiliation(s)
- Qinglai Meng
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China.
| | - Yao Wang
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Yali Long
- Hospital of Shanxi University, Shanxi University, Taiyuan, China
| | - Qi Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University and Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Yajing Gao
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University and Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China.
| | - Bin Xie
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Voulgaridou G, Paraskeva T, Ragia G, Atzemian N, Portokallidou K, Kolios G, Arvanitidis K, Manolopoulos VG. Therapeutic Drug Monitoring (TDM) Implementation in Public Hospitals in Greece in 2003 and 2021: A Comparative Analysis of TDM Evolution over the Years. Pharmaceutics 2023; 15:2181. [PMID: 37765152 PMCID: PMC10535589 DOI: 10.3390/pharmaceutics15092181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Therapeutic drug monitoring (TDM) is the clinical practice of measuring drug concentrations. TDM can be used to determine treatment efficacy and to prevent the occurrence or reduce the risk of drug-induced side effects, being, thus, a tool of personalized medicine. Drugs for which TDM is applied should have a narrow therapeutic range and exhibit both significant pharmacokinetic variability and a predefined target concentration range. The aim of our study was to assess the current status of TDM in Greek public hospitals and estimate its progress over the last 20 years. All Greek public hospitals were contacted to provide data and details on the clinical uptake of TDM in Greece for the years 2003 and 2021 through a structured questionnaire. Data from 113 out of 132 Greek hospitals were collected in 2003, whereas for 2021, we have collected data from 98 out of 122 hospitals. Among these, in 2003 and 2021, 64 and 51 hospitals, respectively, performed TDM. Antiepileptics and antibiotics were the most common drug categories monitored in both years. The total number of drug measurement assays decreased from 2003 to 2021 (153,313 ± 7794 vs. 90,065 ± 5698; p = 0.043). In direct comparisons between hospitals where TDM was performed both in 2003 and 2021 (n = 35), the mean number of measurements was found to decrease for most drugs, including carbamazepine (198.8 ± 46.6 vs. 46.6 ± 10.1, p < 0.001), phenytoin (253.6 ± 59 vs. 120 ± 34.3; p = 0.001), amikacin (147.3 ± 65.2 vs. 91.1 ± 71.4; p = 0.033), digoxin (783.2 ± 226.70 vs. 165.9 ± 28.9; p < 0.001), and theophylline (71.5 ± 28.7 vs. 11.9 ± 6.4; p = 0.004). Only for vancomycin, a significant increase in measurements was recorded (206.1 ± 96.1 vs. 789.1 ± 282.8; p = 0.012). In conclusion, our findings show that TDM clinical implementation is losing ground in Greek hospitals. Efforts and initiatives to reverse this trend are urgently needed.
Collapse
Affiliation(s)
- Gavriela Voulgaridou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
| | - Theodora Paraskeva
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
| | - Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
| | - Natalia Atzemian
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
| | - Konstantina Portokallidou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
- Clinical Pharmacology and Pharmacogenetics Unit, Academic General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
- Clinical Pharmacology and Pharmacogenetics Unit, Academic General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| |
Collapse
|
4
|
When and How to Use MIC in Clinical Practice? Antibiotics (Basel) 2022; 11:antibiotics11121748. [PMID: 36551405 PMCID: PMC9774413 DOI: 10.3390/antibiotics11121748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial resistance to antibiotics continues to be a global public health problem. The choice of the most effective antibiotic and the use of an adapted dose in the initial phase of the infection are essential to limit the emergence of resistance. This will depend on (i) the isolated bacteria and its resistance profile, (ii) the pharmacodynamic (PD) profile of the antibiotic used and its level of toxicity, (iii) the site of infection, and (iv) the pharmacokinetic (PK) profile of the patient. In order to take account of both parameters to optimize the administered treatment, a minimal inhibitory concentration (MIC) determination associated with therapeutic drug monitoring (TDM) and their combined interpretation are required. The objective of this narrative review is thus to suggest microbiological, pharmacological, and/or clinical situations for which this approach could be useful. Regarding the microbiological aspect, such as the detection of antibiotic resistance and its level, the preservation of broad-spectrum β-lactams is particularly discussed. PK-PD profiles are relevant for difficult-to-reach infections and specific populations such as intensive care patients, cystic fibrosis patients, obese, or elderly patients. Finally, MIC and TDM are tools available to clinicians, who should not hesitate to use them to manage their patients.
Collapse
|
5
|
Liquid chromatographic methods in the determination of inosine monophosphate dehydrogenase enzyme activity: a review. Bioanalysis 2022; 14:1453-1470. [PMID: 36705020 DOI: 10.4155/bio-2022-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is a crucial enzyme involved in the de novo synthesis of purine nucleotides. IMPDH activity is used to evaluate the pharmacodynamics/pharmacokinetics of immunosuppressant drugs such as mycophenolic acid and thiopurines. These drugs are often used to prevent organ transplant rejection and as steroid-sparing agents in autoinflammatory diseases such as inflammatory bowel disease and rheumatoid arthritis. Numerous analytical techniques have been employed to evaluate IMPDH activity in biological matrices. However, hyphenated LC techniques were most widely used in the literature. This review focuses on hyphenated LC methods used to measure IMPDH activity and provides detailed insight into the sample preparation techniques, chromatographic conditions, enzymatic assay conditions, detectors and normalization factors employed in those methods.
Collapse
|
6
|
Martin-Loeches I. Therapeutic drug monitoring (TDM) in real-time: a need for the present future. Expert Rev Anti Infect Ther 2022; 20:1245-1247. [PMID: 35921491 DOI: 10.1080/14787210.2022.2110070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Therapeutic drug monitoring (TDM) represents a real need for the present days. There is a huge amount of discussion around personalised medicine and probably this is very relevant in determining the right concentration of antibiotics in some populations. Patients with the most severe spectrum of infections, sepsis and septic shock, currently have wide variations on antibiotic concentrations. This is paramount in order to adequately treat patients with severe infection. In this editorial piece, we propose tools that help to cover the need of minimally invasive monitor of antibiotic concentrations.
Collapse
Affiliation(s)
- Ignacio Martin-Loeches
- Department of Intensive Care Medicine, St. James's Hospital, Multidisciplinary Intensive Care Research Organisation (MICRO), Dublin Ireland.St James's Hospital, James's Street, Dublin, Ireland.,Trinity College Dublin, Ireland.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Pulmonary Department, Hospital Clinic, Universitat de Barcelona, IDIBAPS, ICREA, Barcelona, Spain
| |
Collapse
|
7
|
Shipkova M, Jamoussi H. Therapeutic Drug Monitoring of Antibiotic Drugs: The Role of the Clinical Laboratory. Ther Drug Monit 2022; 44:32-49. [PMID: 34726200 DOI: 10.1097/ftd.0000000000000934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) of anti-infective drugs is an increasingly complex field, given that in addition to the patient and drug as 2 usual determinants, its success is driven by the pathogen. Pharmacodynamics is related both to the patient (toxicity) and bacterium (efficacy or antibiotic susceptibility). The specifics of TDM of antimicrobial drugs stress the need for multidisciplinary knowledge and expertise, as in any other field. The role and the responsibility of the laboratory in this interplay are both central and multifaceted. This narrative review highlights the role of the clinical laboratory in the TDM process. METHODS A literature search was conducted in PubMed and Google Scholar, focusing on the past 5 years (studies published since 2016) to limit redundancy with previously published review articles. Furthermore, the references cited in identified publications of interest were screened for additional relevant studies and articles. RESULTS The authors addressed microbiological methods to determine antibiotic susceptibility, immunochemical and chromatographic methods to measure drug concentrations (primarily in blood samples), and endogenous clinical laboratory biomarkers to monitor treatment efficacy and toxicity. The advantages and disadvantages of these methods are critically discussed, along with existing gaps and future perspectives on strategies to provide clinicians with as reliable and useful results as possible. CONCLUSIONS Although interest in the field has been the driver for certain progress in analytical technology and quality in recent years, laboratory professionals and commercial providers persistently encounter numerous unresolved challenges. The main tasks that need tackling include broadly and continuously available, easily operated, and cost-effective tests that offer short turnaround times, combined with reliable and easy-to-interpret results. Various fields of research are currently addressing these features.
Collapse
Affiliation(s)
- Maria Shipkova
- Competence Center for Therapeutic Drug Monitoring, SYNLAB Holding Germany GmbH, SYNLAB MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | | |
Collapse
|
8
|
Xie F, Liu L, Wang Y, Peng Y, Li S. An UPLC-PDA assay for simultaneous determination of seven antibiotics in human plasma. J Pharm Biomed Anal 2021; 210:114558. [PMID: 34979490 DOI: 10.1016/j.jpba.2021.114558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/02/2021] [Accepted: 12/26/2021] [Indexed: 01/19/2023]
Abstract
Appropriate antibiotic dosing in critically ill patients requires concentration monitoring due to the occurrence of pathophysiological changes and frequent extracorporeal therapy that could significantly alter the normal pharmacokinetics of drugs. Herein, we describe an ultra-performance liquid chromatography with photodiode array (UPLC-PDA) for the simultaneous concentration determination of seven frequently used antibiotics (meropenem, cefotaxime, cefoperazone, piperacillin, linezolid, moxifloxacin, and tigecycline) in plasma from critically ill patients. The analytes were extracted from 200 μL human plasma by the addition of methanol for protein precipitation. The chromatographic separation was achieved using an ACQUITY UPLC HSS T3 column (2.1 × 50 mm, 1.8 µm) with a water (containing 0.1% trifluoroacetic acid)/acetonitrile linear gradient at a flow rate of 0.5 mL/min in a 4.5 min turn-around time. PDA detection wavelength was set individually for the analytes. The method was fully validated according to the European Medicines Agency (EMA) guideline. The lower limits of quantification for the analytes were between 0.05 and 0.8 μg/mL. The method is accurate (intra/inter-assay bias -8.4 to +12.4%) and precise (intra/inter-assay coefficient of variations 0.9-10.1%) over the clinically relevant plasma concentration ranges (upper limits of quantification 5-400 µg/mL). The applicability of the method has been successfully demonstrated by analyzing plasma samples collected from critically ill patients undergoing continuous renal replacement therapy.
Collapse
Affiliation(s)
- Feifan Xie
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Lanyu Liu
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yan Wang
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yaru Peng
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Sanwang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Institute of Clinical Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
9
|
Feliu C, Konecki C, Candau T, Vautier D, Haudecoeur C, Gozalo C, Cazaubon Y, Djerada Z. Quantification of 15 Antibiotics Widely Used in the Critical Care Unit with a LC-MS/MS System: An Easy Method to Perform a Daily Therapeutic Drug Monitoring. Pharmaceuticals (Basel) 2021; 14:1214. [PMID: 34959617 PMCID: PMC8703964 DOI: 10.3390/ph14121214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 11/19/2022] Open
Abstract
Potential under- or overdose of antibiotics may occur in intensive care units due to high variability in plasma concentrations. The risk is either treatment failure or toxicity. Thus, therapeutic drug monitoring of antibiotics may guide dosing adjustment, maximising antibacterial efficacy and minimising toxicity. The aim of this study was to develop and validate a method for the analysis of 15 antibiotics including beta-lactams, linezolid, fluoroquinolones, daptomycin, and clindamycin to have a complete panel in the management of infections. We proposed to develop a fast, sensitive, and quantitative method for the analysis of 15 antibiotics using ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometer (UPLC-MS/MS) technology. this method required only 100 µL of plasma and consisted of a rapid liquid-liquid deproteinisation using methanol. Calibration curves ranged from 0.078 to 500 mg/L depending on the molecules, and were defined according to a therapeutic range. Inter- and intra-assay precisions values were less than 15%. This work described the development and the full validation of a precise, sensitive and accurate assay using UPLC-MS/MS technology. After validation, this new assay was successfully applied to routine therapeutic drug monitoring.
Collapse
Affiliation(s)
- Catherine Feliu
- Department of Pharmacology, HERVI, EA 3801, SFR CAP-Santé, Reims University Hospital, 51 Rue Cognacq-Jay, CEDEX, 51095 Reims, France; (C.F.); (C.K.); (T.C.); (D.V.); (C.H.); (C.G.)
| | - Celine Konecki
- Department of Pharmacology, HERVI, EA 3801, SFR CAP-Santé, Reims University Hospital, 51 Rue Cognacq-Jay, CEDEX, 51095 Reims, France; (C.F.); (C.K.); (T.C.); (D.V.); (C.H.); (C.G.)
| | - Tristan Candau
- Department of Pharmacology, HERVI, EA 3801, SFR CAP-Santé, Reims University Hospital, 51 Rue Cognacq-Jay, CEDEX, 51095 Reims, France; (C.F.); (C.K.); (T.C.); (D.V.); (C.H.); (C.G.)
| | - Damien Vautier
- Department of Pharmacology, HERVI, EA 3801, SFR CAP-Santé, Reims University Hospital, 51 Rue Cognacq-Jay, CEDEX, 51095 Reims, France; (C.F.); (C.K.); (T.C.); (D.V.); (C.H.); (C.G.)
| | - Cyril Haudecoeur
- Department of Pharmacology, HERVI, EA 3801, SFR CAP-Santé, Reims University Hospital, 51 Rue Cognacq-Jay, CEDEX, 51095 Reims, France; (C.F.); (C.K.); (T.C.); (D.V.); (C.H.); (C.G.)
| | - Claire Gozalo
- Department of Pharmacology, HERVI, EA 3801, SFR CAP-Santé, Reims University Hospital, 51 Rue Cognacq-Jay, CEDEX, 51095 Reims, France; (C.F.); (C.K.); (T.C.); (D.V.); (C.H.); (C.G.)
| | - Yoann Cazaubon
- Institute Desbrest of Epidemiology and Public Health, INSERM, University Montpellier, 34000 Montpellier, France;
- Department of Pharmacology, Montpellier University Hospital, Avenue du Doyen Gaston Giraud, 34090 Montpellier, France
| | - Zoubir Djerada
- Department of Pharmacology, HERVI, EA 3801, SFR CAP-Santé, Reims University Hospital, 51 Rue Cognacq-Jay, CEDEX, 51095 Reims, France; (C.F.); (C.K.); (T.C.); (D.V.); (C.H.); (C.G.)
| |
Collapse
|
10
|
Caro Y, Van Strate P, Sartorio M, Cámara M, De Zan M. Application of the lifecycle approach to the development and validation of a chromatographic method for therapeutic drug monitoring of ceftazidime, meropenem, and piperacillin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Shirani M, Akbari-adergani B, Shahdadi F, Faraji M, Akbari A. A Hydrophobic Deep Eutectic Solvent-Based Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction for Determination of β-Lactam Antibiotics Residues in Food Samples. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02122-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
de Faria LV, Lisboa TP, Campos NDS, Alves GF, Matos MAC, Matos RC, Munoz RAA. Electrochemical methods for the determination of antibiotic residues in milk: A critical review. Anal Chim Acta 2021; 1173:338569. [PMID: 34172150 DOI: 10.1016/j.aca.2021.338569] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
Several antibiotics have been applied to veterinary medicine due to their broad-spectrum of antibacterial activity and prophylactic power. Residues of these antibiotics can be accumulated in dairy cattle, in addition to promoting contamination of the environment and, in more serious cases, in milk, causing a public health problem. Different regulatory agencies establish maximum residue limits for these antibiotics in milk, so it becomes important to develop sensitive analytical methods for monitoring these compounds. Electrochemical techniques are important analytical tools in analytical chemistry because they present low cost, simplicity, high sensitivity, and adequate analytical frequency (sample throughput) for routine analyses. In this sense, this review summarizes the state of the art of the main electrochemical sensors and biosensors, instrumental techniques, and sample preparation used for the development of analytical methods, published in the last five years, for the monitoring of different classes of antibiotics: aminoglycosides, amphenicols, beta-lactams, fluoroquinolones, sulfonamides, and tetracyclines, in milk samples. The different strategies to develop electrochemical sensors and biosensors are critically compared considering their analytical features. The mechanisms of electrochemical oxidation/reduction of the antibiotics are revised and discussed considering strategies to improve the selectivity of the method. In addition, current challenges and future prospects are discussed.
Collapse
Affiliation(s)
- Lucas Vinícius de Faria
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Thalles Pedrosa Lisboa
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Náira da Silva Campos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Guilherme Figueira Alves
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | | | - Renato Camargo Matos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil.
| | | |
Collapse
|
13
|
Fratoni AJ, Nicolau DP, Kuti JL. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacotherapy 2021; 41:220-233. [PMID: 33480024 DOI: 10.1002/phar.2505] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
Therapeutic drug monitoring (TDM) opens the door to personalized medicine, yet it is infrequently applied to β-lactam antibiotics, one of the most commonly prescribed drug classes in the hospital setting. As we continue to understand more about β-lactam pharmacodynamics (PD) and wide inter- and intra-patient variability in pharmacokinetics (PK), the utility of TDM has become increasingly apparent. For β-lactams, the time that free concentrations remain above the minimum inhibitory concentration (MIC) as a function of the dosing interval (%fT>MIC) has been shown to best predict antibacterial effect. Many studies have shown that β-lactam %fT>MIC exposures are often suboptimal across a wide variety of disease states and clinical settings. A limitation to implementing this practice is the general lack of understanding on how to best operationalize this intervention and interpret the results. The instrumentation and expertise needed to quantify β-lactams for TDM is rarely available locally, but certain laboratories advertise these services and perform them regularly. Familiarity with the modalities and nuances of antimicrobial susceptibility testing is crucial to establishing β-lactam concentration targets that meet the relevant exposure thresholds. Evaluation of these concentrations is best accomplished using population PK software and Bayesian modeling, for which a multitude of programs are available. While TDM of β-lactams has shown an ability to increase the rate of target attainment, there is currently limited evidence to suggest that it leads to improved clinical outcomes. Although consensus guidelines for β-lactam TDM do not exist in the United States, guidance would help to promote this important practice and better standardize the approach across institutions. Herein, we discuss the basis for β-lactam TDM, review supporting evidence, and provide guidance for implementation in specific patient populations.
Collapse
Affiliation(s)
- Andrew J Fratoni
- Center for Anti-infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - David P Nicolau
- Center for Anti-infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Joseph L Kuti
- Center for Anti-infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
14
|
A systematic review on chromatography-based method validation for quantification of vancomycin in biological matrices. Bioanalysis 2020; 12:1767-1786. [PMID: 33275028 DOI: 10.4155/bio-2020-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A fully validated bioanalytical methods are prerequisite for pharmacokinetic and bioequivalence studies as well as for therapeutic drug monitoring. Due to high pharmacokinetic variability and narrow therapeutic index, vancomycin requires reliable quantification methods for therapeutic drug monitoring. To identify published chromatographic based bioanalytical methods for vancomycin in current systematic review, PubMed and ScienceDirect databases were searched. The selected records were evaluated against the method validation criteria derived from international guidelines for critical assessment. The major deficiencies were identified in method validation parameters specifically for accuracy, precision and number of calibration and validation standards, which compromised the reliability of the validated bioanalytical methods. The systematic review enacts to adapt the recommended international guidelines for suggested validation parameters to make bioanalysis reliable.
Collapse
|
15
|
Tuzimski T, Petruczynik A. Review of Chromatographic Methods Coupled with Modern Detection Techniques Applied in the Therapeutic Drugs Monitoring (TDM). Molecules 2020; 25:E4026. [PMID: 32899296 PMCID: PMC7504794 DOI: 10.3390/molecules25174026] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022] Open
Abstract
Therapeutic drug monitoring (TDM) is a tool used to integrate pharmacokinetic and pharmacodynamics knowledge to optimize and personalize various drug therapies. The optimization of drug dosing may improve treatment outcomes, reduce toxicity, and reduce the risk of developing drug resistance. To adequately implement TDM, accurate and precise analytical procedures are required. In clinical practice, blood is the most commonly used matrix for TDM; however, less invasive samples, such as dried blood spots or non-invasive saliva samples, are increasingly being used. The choice of sample preparation method, type of column packing, mobile phase composition, and detection method is important to ensure accurate drug measurement and to avoid interference from matrix effects and drug metabolites. Most of the reported procedures used liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) techniques due to its high selectivity and sensitivity. High-performance chromatography with ultraviolet detection (HPLC-UV) methods are also used when a simpler and more cost-effective methodology is desired for clinical monitoring. The application of high-performance chromatography with fluorescence detection (HPLC-FLD) with and without derivatization processes and high-performance chromatography with electrochemical detection (HPLC-ED) techniques for the analysis of various drugs in biological samples for TDM have been described less often. Before chromatographic analysis, samples were pretreated by various procedures-most often by protein precipitation, liquid-liquid extraction, and solid-phase extraction, rarely by microextraction by packed sorbent, dispersive liquid-liquid microextraction. The aim of this article is to review the recent literature (2010-2020) regarding the use of liquid chromatography with various detection techniques for TDM.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Anna Petruczynik
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|