1
|
Yang K, Wang R, Lu J, Wang J, Liao X, Wang C. A covalent organic framework nanosheet-nanochannel composite with signal amplification strategy for electrochemical enantioselective recognition. Talanta 2024; 277:126331. [PMID: 38823324 DOI: 10.1016/j.talanta.2024.126331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Recognition and separation of chiral isomers are of great importance in both industrial and biological applications. However, owing to identical molecular formulas and chemical properties of enantiomers, signal transduction and amplification are still two major challenges in chiral sensing. In this study, we developed an enantioselective device by integrating chiral covalent organic framework nanosheets (CONs) with nanochannels for sensitive identification and quantification of enantiomers. Using 3,4-dihydroxyphenylalanine (DOPA) as the model analyte, the as-prepared chiral nanofluidic device exhibits a remarkable chiral recognition ability to l-DOPA than d-DOPA. More importantly, due to the chelation of DOPA with Fe3+ ions, it can efficiently block the ion transport through channel and shield the channel surface charge, which will amplify the difference in the electrochemical response of l-DOPA and d-DOPA. Therefore, a sensitive chiral recognition can be achieved using the present nanofluidic device coupled using electrochemical amplification strategy. Notably, using this method, an ultra-low concentration of l-DOPA (as low as 0.21 pM) can be facilely and successfully detected with a linear range of 1 pM-10 μM. This study provides a reliable and sensitive approach for achieving highly selective detection of chiral molecules.
Collapse
Affiliation(s)
- Kun Yang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ruyi Wang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Junjian Lu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China; Honors college, Nanjing Normal University, Nanjing, 210023, China
| | - Jin Wang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xuewei Liao
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China; Analytical & Testing Center, Nanjing Normal University, Nanjing, 210023, China.
| | - Chen Wang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Zhu W, Ye S, Li K, Lv J, Fan F, Zhang L, Zhang X, Fu Y, Wang T. Visual detection of chiral arginine enantiomer based on Fabry-Pérot resonator with BSA grafted polymer brush insulator as transducer. SENSORS AND ACTUATORS B: CHEMICAL 2024; 412:135842. [DOI: 10.1016/j.snb.2024.135842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Kumari R, Dkhar DS, Mahapatra S, Divya, Singh SP, Chandra P. Nano-Engineered Surface Comprising Metallic Dendrites for Biomolecular Analysis in Clinical Perspective. BIOSENSORS 2022; 12:1062. [PMID: 36551029 PMCID: PMC9775260 DOI: 10.3390/bios12121062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 09/28/2023]
Abstract
Metallic dendrites, a class of three-dimensional nanostructured materials, have drawn a lot of interests in the recent years because of their interesting hierarchical structures and distinctive features. They are a hierarchical self-assembled array of primary, secondary, and terminal branches with a plethora of pointed ends, ridges, and edges. These features provide them with larger active surface areas. Due to their enormous active areas, the catalytic activity and conductivity of these nanostructures are higher as compared to other nanomaterials; therefore, they are increasingly used in the fabrication of sensors. This review begins with the properties and various synthetic approaches of nanodendrites. The primary goal of this review is to summarize various nanodendrites-engineered biosensors for monitoring of small molecules, macromolecules, metal ions, and cells in a wide variety of real matrices. Finally, to enlighten future research, the limitations and future potential of these newly discovered materials are discussed.
Collapse
Affiliation(s)
- Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Daphika S. Dkhar
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Surinder P. Singh
- CSIR—National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
4
|
Salinas G, Niamlaem M, Kuhn A, Arnaboldi S. Recent Advances in Electrochemical Transduction of Chiral Information. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Deng Y, Zhang Z, Pang Y, Zhou X, Wang Y, Zhang Y, Yuan Y. Common materials, extraordinary behavior: An ultrasensitive and enantioselective strategy for D-Tryptophan recognition based on electrochemical Au@p-L-cysteine chiral interface. Anal Chim Acta 2022; 1227:340331. [DOI: 10.1016/j.aca.2022.340331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
|
6
|
Hu S, Shuai Q, Lin Y, Fu Y, Li M. Chiral Fe xCu ySe nanoparticles as peroxidase mimics for colorimetric detection of 3, 4-dihydroxy-phenylalanine enantiomers. NANOTECHNOLOGY 2022; 33:135503. [PMID: 34905735 DOI: 10.1088/1361-6528/ac4306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
L-3,4-dihydroxy-phenylalanine (L-dopa) is the most widely used drug in Parkinson's disease treatment. However, development of cost-effective and high-throughput sensors to accurate enantioselective discrimination of L-dopa and D-dopa remains challenging to date. Herein, on the basis of the peroxidase-mimic activity of chiral FexCuySe nanoparticles, we demonstrated a novel colorimetric sensor for determination of chiral dopa. The surface chiral ligand, L/D-histidine (L/D-His), endowed the nanozymes with enantioselectivity in catalyzing the oxidation of dopa enantiomers. According to the values ofkcat/Km, the efficiency of L-His modified nanoparticles (L-FexCuySe NPs) towards L-dopa was 1.56 times higher than that of D-dopa. While, D-His can facilely reverse the preference of the nanozyme to D-dopa. On the basis of high catalytic activity and enantioselectivity of L-FexCuySe NPs in oxidation of L-dopa, the L-FexCuySe NPs-based system can be utilized for detection of L-dopa. The linear ranges for L-dopa determination were 5μM-0.125 mM and 0.125 mM-1 mM with a detection limit of 1.02μM. Critically, the developed sensor has been successfully applied in the quality control of clinical used L-dopa tablets. Our work sheds light on developing simple and sensitive chiral nanomaterials-based sensors for drug analysis.
Collapse
Affiliation(s)
- Shuyang Hu
- Key Laboratory of Innovative Drug Development and Evaluation, College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Qiuyan Shuai
- Key Laboratory of Innovative Drug Development and Evaluation, College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yulong Lin
- Key Laboratory of Innovative Drug Development and Evaluation, College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yan Fu
- Key Laboratory of Innovative Drug Development and Evaluation, College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Meng Li
- Key Laboratory of Innovative Drug Development and Evaluation, College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| |
Collapse
|
7
|
Ma X, Guo Y, Zhang L, Wang K, Yu A, Zhang S, Ouyang G. Crystal morphology tuning and green post-synthetic modification of metal organic framework for HPLC enantioseparation. Talanta 2021; 239:123143. [PMID: 34923255 DOI: 10.1016/j.talanta.2021.123143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
Chiral metal-organic frameworks (CMOFs) served as chiral stationary phases (CSPs) show great potential in enantioseparation field. However, their performance improvement are still hindered by the difficult column packed and high back pressure due to the irregular morphology and broad size scope of CMOF particles. Here, the size and morphology of achiral Co-MOF-74 were effectively adjusted by controlling the synthetic route, temperature, the ratio of reactants and the amount of 2-methylimidazole (2-MI) at first. As a result, the uniformly spherical crystals in size of about 5 μm with good dispersion were obtained. Subsequently, a simple, green post-synthetic modification strategy was proposed for the fabrication of l-tyrosine functionalized Co-MOF-74, namely Co-MOF-74-L-Tyr in H2O by incorporating l-tyrosine into the parent framework of Co-MOF-74 to construct chiral microenvironment. The homochiral Co-MOF-74-L-Tyr CSP gave superior enantioseparation performance for the eight chiral drugs and drug intermediates, such as nitrendipine, nimodipine, benzoin, 2,2'-furoin and bi-2-naphthol to the commercial columns under normal phase condition. The good repeatability and stability of this CSP was verified by the replicate enantioseparation for nimodipine and flavanone. Furthermore, the Co-MOF-74-L-Tyr packed column was successfully applied to detect the product N-1-(1-naphthyl)ethyltosylamide (HR-8) in the asymmetric reductive amination reaction. The size/morphology-controlled synthesis coupled with the green post-synthetic modification approach paves the way to fabricate target chiral MOFs with pre-designed functional groups, which is an effective complement for the preparation of CSPs in chiral chromatography.
Collapse
Affiliation(s)
- Xue Ma
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Yun Guo
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Ling Zhang
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Kexuan Wang
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Ajuan Yu
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China.
| | - Shusheng Zhang
- Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Gangfeng Ouyang
- Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
8
|
Hatamluyi B, Sadeghian R, Sany SBT, Alipourfard I, Rezayi M. Dual-signaling electrochemical ratiometric strategy for simultaneous quantification of anticancer drugs. Talanta 2021; 234:122662. [PMID: 34364470 DOI: 10.1016/j.talanta.2021.122662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
A novel and unique ratiometric electrochemical sensing strategy for highly reliable and selective simultaneous quantification of Irinotecan (IRI) and 5-Fluorouracil (5-FU) has been developed based on Pd-Au/MWCNT-rGO nanocomposite. Introduction of Pd-Au/MWCNT-rGO significantly improved the speed of electron transport, specific surface area, and electrical catalytic ability of sensing system due to synergistic effect of Pd-Au bimetallic nanoparticles and MWCNT-rGO hybrid structure. The assay strategy was based on the use of ferrocene (Fc) as reference electroactive substance and IRI and 5-FU as analytes with three oxidation peaks at different potentials (Fc at +0.20 V, IRI at +0.58 V, and 5-FU at +1.17 V). The oxidation peak currents of the IRI and 5-FU were gradually enhanced while that of Fc remained almost constant with continuous adding of IRI and 5-FU. By using IIRI/IFc and I5-FU/IFc signals as output, the designed ratiometric system showed good performance with a wide linear range of 0.05-40 μM for IRI and 0.05-75 μM for 5-FU and low detection limit of 0.0061 μM and 0.0094 μM for IRI and 5-FU, respectively. This study proved that ratiometric strategy is able to eliminate disturbance caused by the sensing environment and possess high sensitivity, reproducibility, stability, and selectivity toward anticancer drugs detection, over potential interferents as well as opens a new procedure for reliable and selective simultaneous analysis of other analytes.
Collapse
Affiliation(s)
- Behnaz Hatamluyi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Sadeghian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyedeh Belin Tavakoly Sany
- Department of Health Education and Health Promotion, Social Determinants of Health Research Center, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Iraj Alipourfard
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Maistrenko VN, Zil’berg RA. Enantioselective Voltammetric Sensors on the Basis of Chiral Materials. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|