1
|
Du S, Zhang H. Application of photothermal effects of nanomaterials in food safety detection. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:261-303. [PMID: 39103215 DOI: 10.1016/bs.afnr.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Numerous nanomaterials endowed with outstanding light harvesting and photothermal conversion abilities have been extensively applied in various fields, such as photothermal diagnosis and therapy, trace substance detection, and optical imaging. Although photothermal detection methods have been established utilizing the photothermal effect of nanomaterials in recent years, there is a scarcity of reviews regarding their application in food safety detection. Herein, the recent advancements in the photothermal conversion mechanism, photothermal conversion efficiency calculation, and preparation method of photothermal nanomaterials were reviewed. In particular, the application of photothermal nanomaterials in various food hazard analyses and the newly established photothermal detection methods were comprehensively discussed. Moreover, the development and promising future trends of photothermal nanomaterial-based detection methods were discussed, which provide a reference for researchers to propose more effective, sensitive, and accurate detection methods.
Collapse
Affiliation(s)
- Shuyuan Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, P.R. China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, P.R. China.
| |
Collapse
|
2
|
Yaiwong P, Iamsawat K, Wiratchan S, Jumpathong W, Semakul N, Bamrungsap S, Jakmunee J, Ounnunkad K. A toluidine blue/porous organic polymer/2D MoSe 2 nanocomposite as an electrochemical signaling platform for a sensitive label-free aflatoxin B1 bioassay in some crops. Food Chem 2024; 439:138147. [PMID: 38070230 DOI: 10.1016/j.foodchem.2023.138147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
A label-free electrochemical immunosensor using a toluidine blue (TB)/porous organic polymer (POP)/two-dimensional molybdenum diselenide (2D MoSe2) nanocomposite is developed for highly sensitive detection of aflatoxin B1 (AFB1) in selected crops. A POP/2D MoSe2 composite material is employed to modify the surface of a screen-printed carbon electrode (SPCE). Subsequently, TB is adsorbed on the modified SPCE surface, and the resulting TB/POP/2D MoSe2 composite is then used to construct a biosensor. The new POP/2D MoSe2 nanocomposite offers a high surface-to-volume area and is a good electroactive and biocompatible adsorbent for loading TB probe and capture antibodies. Adsorbed TB onto the POP/2D MoSe2 nanocomposite is utilized as a redox probe for the signal amplification unit. This TB/POP/2D MoSe2 nanocomposite provides good electron transfer properties of TB redox probe, good electrical conductivity, good biocompatibility, and likable adsorption ability, thus obtaining a sufficient immobilization quantity of antibodies for the sensor construction. After immobilization of the anti-AFB1 antibody and blocking with BSA on the composite surface, the immunosensor is obtained for the detection of AFB1. Under optimum conditions, the sensor shows a linear logarithmic range of 2.5-40 ng mL-1 with a limit of detection (LOD) of 0.40 ng mL-1. The developed sensor provides several advantages in terms of simplicity, low cost, short analysis time, high selectivity, stability, and reproducibility. Additionally, the proposed immunosensor is successfully validated by the detection of AFB1 in rice, corn, and peanut samples. Utilizing the TB/POP/2D MoSe2 nanocomposite, this label-free electrochemical immunosensor demonstrates outstanding sensitivity and selectivity in detecting AFB1, making it a valuable tool for ensuring the safety of agricultural products and enhancing food security.
Collapse
Affiliation(s)
- Patrawadee Yaiwong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kamonluck Iamsawat
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirakorn Wiratchan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
3
|
Govindan B, Sabri MA, Hai A, Banat F, Haija MA. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics 2023; 15:868. [PMID: 36986729 PMCID: PMC10058002 DOI: 10.3390/pharmaceutics15030868] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023] Open
Abstract
The new era of nanomedicine offers significant opportunities for cancer diagnostics and treatment. Magnetic nanoplatforms could be highly effective tools for cancer diagnosis and treatment in the future. Due to their tunable morphologies and superior properties, multifunctional magnetic nanomaterials and their hybrid nanostructures can be designed as specific carriers of drugs, imaging agents, and magnetic theranostics. Multifunctional magnetic nanostructures are promising theranostic agents due to their ability to diagnose and combine therapies. This review provides a comprehensive overview of the development of advanced multifunctional magnetic nanostructures combining magnetic and optical properties, providing photoresponsive magnetic platforms for promising medical applications. Moreover, this review discusses various innovative developments using multifunctional magnetic nanostructures, including drug delivery, cancer treatment, tumor-specific ligands that deliver chemotherapeutics or hormonal agents, magnetic resonance imaging, and tissue engineering. Additionally, artificial intelligence (AI) can be used to optimize material properties in cancer diagnosis and treatment, based on predicted interactions with drugs, cell membranes, vasculature, biological fluid, and the immune system to enhance the effectiveness of therapeutic agents. Furthermore, this review provides an overview of AI approaches used to assess the practical utility of multifunctional magnetic nanostructures for cancer diagnosis and treatment. Finally, the review presents the current knowledge and perspectives on hybrid magnetic systems as cancer treatment tools with AI models.
Collapse
Affiliation(s)
- Bharath Govindan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
4
|
Synthesis of CuGa2O4/MoS2 nanocomposite and its electrogenerated chemiluminescent sensing application. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Li J, Wang C, Wang W, Zhao L, Han H. Dual-Mode Immunosensor for Electrochemiluminescence Resonance Energy Transfer and Electrochemical Detection of Rabies Virus Glycoprotein Based on Ru(bpy) 32+-Loaded Dendritic Mesoporous Silica Nanoparticles. Anal Chem 2022; 94:7655-7664. [PMID: 35579617 DOI: 10.1021/acs.analchem.2c00954] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rabies is a serious zoonotic disease in almost all warm-blooded animals and causes fatal encephalitis. The detection of rabies virus (RABV) is critical and remains a significant challenge. Herein, an electrochemiluminescence resonance energy transfer (ECL-RET) and electrochemical (EC) dual-mode immunosensor was developed for highly sensitive detection of RABV glycoprotein. Dendritic mesoporous silica nanoparticles (DMSNs) were employed to load Ru(bpy)32+ and to obtain ECL probes (Ru@DMSNs). Ru@DMSNs were decorated on the electrode surface, followed by the modification of the RABV antibody (Ab1). RABV was specifically recognized and captured by Ab1, causing the decline of the ECL signal due to the obstruction of electron transfer. Additionally, manganese oxide nanoparticles (MnOx) modified with Ab2 can further quench the ECL signal of Ru@DMSNs via the RET between Ru@DMSNs and MnOx. Meanwhile, MnOx can catalyze the oxidation of o-phenylenediamine (o-PD), generating a significant differential pulse voltammetry (DPV) signal as a second signal to monitor RABV glycoprotein concentration. Consequently, an immunosensor was developed to achieve dual-signal detection of RABV and improve reliability. Under the optimal conditions, detection ranges of 0.10 pg·mL-1 to 10 ng·mL-1 for ECL (with an 88 fg·mL-1 detection limit) and 1 pg·mL-1 to 2 ng·mL-1 for EC (with a 0.1 pg·mL-1 detection limit) were obtained for RABV detection. The reliability of this immunoassay was validated by eight brain tissue samples. The results were found to be compatible with the results of the real-time reverse transcription-polymerase chain reaction (RT-PCR) assay, indicating the potential applicability of this method for RABV diagnosis.
Collapse
Affiliation(s)
- Jiawen Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Caiqian Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.,State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer. Mater Today Bio 2022; 13:100218. [PMID: 35243293 PMCID: PMC8861407 DOI: 10.1016/j.mtbio.2022.100218] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022] Open
Abstract
The grand challenges of ovarian cancer early diagnosis have led to an alarmingly high mortality rate from ovarian cancer (OC) in the past half century. In vitro diagnosis (IVD) has great potential in the early diagnosis of OC through non-invasive and dynamic analysis of biomarkers. However, common IVDs often fail to provide reliable test results due to lack of sensitivity, specificity, and convenience. In recent years, the discovery of new biomarkers and the progress of nanomaterials can solve the shortcomings of traditional IVD for early OC. These emerging biosensors based on nanomaterials offer great improvements in convenience, speed, selectivity, and sensitivity of IVD. In this review, we firstly systematically summarized the limits of commercial IVD biosensors of OC and the latest discovery of new biomarkers for OC. The representative optimization strategies for six potential ovarian cancer biomarkers are systematically discussed with emphasis on nanomaterial selection and the design of detection principles. Then, various strategies adopted by emerging biosensors based on nanomaterials are also introduced in detail, including optical, electrochemical, microfluidic, and surface plasmon sensors. Finally, current challenges of early OC IVD are proposed, and future research directions on this promising field are also discussed. Failure to diagnose OC early will lead to high mortality. The detection of OC-related biomarkers by IVD method will achieve early diagnosis of OC. The development of nanomaterials-based biosensors is expected to enhance efficiency of detection. Strategies and progress for nanomaterials-based biosensors are systematically reviewed.
Collapse
|
7
|
Wen J, Jiang D, Shan X, Wang W, Xu F, Shiigi H, Chen Z. Ternary electrochemiluminescence biosensor based on black phosphorus quantum dots doped perylene derivative and metal organic frameworks as a coreaction accelerator for the detection of chloramphenicol. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Wei M, Rao H, Niu Z, Xue X, Luo M, Zhang X, Huang H, Xue Z, Lu X. Breaking the time and space limitation of point-of-care testing strategies: Photothermometric sensors based on different photothermal agents and materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Wen J, Jiang D, Shan X, Wang W, Xu F, Chen Z. A novel electrochemiluminescence aptasensor for sensitive detection of kanamycin based on the synergistic enhancement effects between black phosphorus quantum dots and silver-decorated high-luminescence polydopamine nanospheres. Analyst 2021; 146:3493-3499. [PMID: 33960345 DOI: 10.1039/d1an00265a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Black phosphorus quantum dots (BPQDs), as a new type of nanomaterial, have excellent electrical and optical properties. In this work, an efficient monitoring method for kanamycin (KAN) was developed based on a sensitive and selective electrochemiluminescence (ECL) aptasensor. The construction of the ECL illuminant was based on BPQDs loaded on silver-nanoparticle modified high-luminescence polydopamine nanospheres (HLPNs@Ag). HLPNs possessed a large specific surface area and strong adhesion, which could support a great deal of BPQDs. Meanwhile, Ag NPs could accelerate the electron-transfer (ET) rate of the sensor and amplify the ECL signal of the BPQDs. Based on the synergistic enhancement effects between the above materials, the as-fabricated nanocomposites exhibited superior ECL performance. With the assistance of a KAN aptamer, the sensor can detect KAN sensitively and selectively. Under optimal conditions, the aptasensor could detect KAN in a wide linear range from 1 × 10-12 to 1.0 × 10-7 M with a detection limit of 1.7 × 10-13 M (S/N = 3). More importantly, this ultra-sensitive and rapid ECL aptasensor-based KAN detection system provided excellent applicability for the monitoring of environmental safety.
Collapse
Affiliation(s)
- Jing Wen
- Jiangsu key Laboratory of advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 21364, China.
| | - Ding Jiang
- Jiangsu key Laboratory of advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 21364, China. and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Xueling Shan
- Jiangsu key Laboratory of advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 21364, China. and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Wenchang Wang
- Jiangsu key Laboratory of advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 21364, China. and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Fangmin Xu
- Jiangsu key Laboratory of advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 21364, China. and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Zhidong Chen
- Jiangsu key Laboratory of advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 21364, China. and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
10
|
Yin H, Shi Y, Liu H, Dong Y, Chu X. Dual-potential electrochemiluminescence of single luminophore for detection of biomarker based on black phosphorus quantum dots as co-reactant. Mikrochim Acta 2021; 188:181. [PMID: 33954865 DOI: 10.1007/s00604-021-04833-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022]
Abstract
Simultaneous cathodic and anodic electrochemiluminescence (ECL) emissions of needle-like nanostructures of Ru(bpy)32+ (RuNDs) as the only luminophore are reported based on different co-reactants. Cathodic ECL was attained from RuNDs/K2S2O8 system, while anodic ECL was achieved from RuNDs/black phosphorus quantum dots (BPQDs) system. Ferrocene attached to the hairpin DNA could quench the cathodic and anodic ECL simultaneously. Subsequently, the ECL signals recovered in the presence of tumor marker mucin 1 (MUC1), which made it possible to quantitatively detect MUC1. The variation of ECL signal was related linearly to the concentrations of MUC1 in the range 20 pg mL-1 to 10 ng mL-1, and the detection limits were calculated to 2.5 pg mL-1 (anodic system, 3σ) and 6.2 pg mL-1 (cathodic system, 3σ), respectively. The recoveries were 97.0%, 105%, and 95.2% obtained from three human serum samples, and the relative standard deviation (RSD) is 5.3%. As a proof of concept, this work realized simultaneous ECL emission of a single luminophore, which initiates a new thought in biomarker ECL detection beyond the traditional ones. Simultaneous cathodic and anodic ECL emissions of RuNDs were reported based on different co-reactants. Ferrocene could quench the ECL emission in the cathode and the anode simultaneously. Thus, an aptasensor was constructed based on the variation of ECL intensity. As a proof of concept, this work realized simultaneous ECL emission of a single luminophore, which initiates a new thought in biomarker ECL detection beyond the traditional ones by avoiding the false positive signals.
Collapse
Affiliation(s)
- Hao Yin
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - YaHao Shi
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - YongPing Dong
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, 243002, China.
| | - XiangFeng Chu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, 243002, China
| |
Collapse
|
11
|
Fabrication of magnetic nanoparticles supported ionic liquid catalyst for transesterification of vegetable oil to produce biodiesel. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Pandey A, Nikam AN, Padya BS, Kulkarni S, Fernandes G, Shreya AB, García MC, Caro C, Páez-Muñoz JM, Dhas N, García-Martín ML, Mehta T, Mutalik S. Surface architectured black phosphorous nanoconstructs based smart and versatile platform for cancer theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Tripathy A, Nine MJ, Silva FS. Biosensing platform on ferrite magnetic nanoparticles: Synthesis, functionalization, mechanism and applications. Adv Colloid Interface Sci 2021; 290:102380. [PMID: 33819727 DOI: 10.1016/j.cis.2021.102380] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
Ferrite magnetic nanoparticles (FMNPs) are gaining popularity to design biosensors for high-performance clinical diagnosis. The fusion of information shows that FMNPs based biosensors require well-tuned FMNPs as detection probes to produce large and specific biological signals with minimal non-specific binding. Nevertheless, there is a noticeable lacuna of information to solve the issues related to suitable synthesis route, particle size reduction, functionalization, sensitivity towards targeted intercellular biological tiny particles, and lower signal-to-noise ratio. Therefore it allows exploring unique characteristics of FMNPs to design a suitable sensing device for intracellular measurements and diseases detection. This review focuses on the extensively used synthesis routes, their advantages and limitations, crystalline structure, functionalization, along with recent applications of FMNPs in biosensors, taking into consideration their analytical figures of merit and range of linearity. This work also addresses the current progress, key factors for sensitivity, selectivity and productivity improvement along with the challenges, future trends and perspectives of FMNPs based biosensors.
Collapse
|
14
|
He B, Wang K. A "signal off" aptasensor based on NiFe 2O 4 NTs and Au@Pt NRs for the detection of deoxynivalenol via voltammetry. Mikrochim Acta 2021; 188:23. [PMID: 33404751 DOI: 10.1007/s00604-020-04666-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
A "signal off" aptasensor has been developed to detect deoxynivalenol (DON). DON aptamers (Apt) were used as biological recognition elements, nickel ferrite nanotubes (NiFe2O4 NTs) are used as the base material to increase the surface area of the electrode, and the Au@Pt NRs were used as carriers for loading signal labels thionine (Thi) and complementary strand (cDNA). In the presence of DON it will be specifically captured by Apt, then the competition mechanism was triggered; the signal molecules fall off from the electrode surface, which then causes the electrode signal to decrease. NiFe2O4 NTs and Au@Pt NRs were characterized by transmission electron microscope (TEM), scanning electron micrograph (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The designed sensor provides a concentration range of 1 × 10-8 to 5 × 10-4 mg mL-1 and limit of detection of 3.02 × 10-9 mg mL-1. Determination of DON in corn meal samples was investigated and the recovery was 98.4 to 103.5%. The proposed aptasensor displayed good sensitivity, high specificity, and acceptable reproducibility. Graphical abstract Based on NiFe2O4 NTs as substrate material and Au@Pt NRs as signal label prepared DON aptasensor for the determination of DON.
Collapse
Affiliation(s)
- Baoshan He
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Road 100#, Zhengzhou High & New Technology Industries Development Zone, Zhengzhou, 450001, Henan Province, People's Republic of China.
| | - Kai Wang
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Road 100#, Zhengzhou High & New Technology Industries Development Zone, Zhengzhou, 450001, Henan Province, People's Republic of China
| |
Collapse
|
15
|
Recent advance in biosensing applications based on two-dimensional transition metal oxide nanomaterials. Talanta 2020; 219:121308. [DOI: 10.1016/j.talanta.2020.121308] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
|
16
|
Li H, Wang J, Du J. A novel luminol chemiluminescence system induced by black phosphorus quantum dots for cobalt (II) detection. Talanta 2020; 223:121712. [PMID: 33303161 DOI: 10.1016/j.talanta.2020.121712] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
Black phosphorus quantum dots (BP QDs) were prepared through a solvothermal exfoliation method in alkaline N-methyl-2-pyrrolidinone. The BP QDs induce distinct chemiluminescence (CL) of alkaline luminol directly. A possible reaction mechanism is proposed by the study of CL spectrum, ultraviolet-visible absorption spectra, electron paramagnetic resonance spectra as well as radical scavenging experiments. The presence of BP QDs significantly increases generation of active oxygen species, which oxidize luminol and lead to intense CL emission at 425 nm. The reaction of luminol with BP QDs are specifically catalyzed by cobalt (II) ion, this presents a sensitive CL method for cobalt (II) ion. A linear response range extends from 2.5 to 2000.0 pmol/L cobalt (II) ion and a detection limit of 0.7 pmol/L (3sb) is acquired. The method displays a good precision approved by a relative standard deviation of 1.9% at 100.0 pmol/L cobalt (II) ion solution (n = 11). A preliminary application of the method was conducted by successful determination of cobalt amount in silica gel and rain water samples.
Collapse
Affiliation(s)
- Hongdan Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiawei Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianxiu Du
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|