1
|
Guo C, Cui E, Wang M, Liu X, Yu Y, Xie X, Yang D. Tailorable optical properties of polymer nanodots for triple-mode fluorescence detection of nucleic acids. Chem Commun (Camb) 2024; 60:4942-4945. [PMID: 38629242 DOI: 10.1039/d4cc01327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
We present a triple-mode nanosensor platform for nucleic acid detection utilizing fluorescence anisotropy and Förster resonance energy transfer (FRET) strategies. The self-assembled nanoprobes serve as mass amplifiers, nanoquenchers, or nanodonors, exhibiting high FRET efficiencies (64.4-86.5%) and demonstrating excellent detection capabilities in DNA and microRNA analysis.
Collapse
Affiliation(s)
- Chao Guo
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Enna Cui
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Mengxiao Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Xuan Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Yanyan Yu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Dongzhi Yang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
2
|
Xie TJ, Xie JL, Luo YJ, Mao K, Huang CZ, Li YF, Zhen SJ. CRISPR-Cas12a Coupled with DNA Nanosheet-Amplified Fluorescence Anisotropy for Sensitive Detection of Biomolecules. Anal Chem 2023; 95:7237-7243. [PMID: 37120835 DOI: 10.1021/acs.analchem.3c00156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
DNA nanosheets (DNSs) have been utilized effectively as a fluorescence anisotropy (FA) amplifier for biosensing. But, their sensitivity needs to be further improved. Herein, CRISPR-Cas12a with strong trans-cleavage activity was utilized to enhance the FA amplification ability of DNSs for the sensitive detection of miRNA-155 (miR-155) as a proof-of-principle target. In this method, the hybrid of the recognition probe of miR-155 (T1) and a blocker sequence (T2) was immobilized on the surface of magnetic beads (MBs). In the presence of miR-155, T2 was released by a strand displacement reaction, which activated the trans-cleavage activity of CRISPR-Cas12a. The single-stranded DNA (ssDNA) probe modified with a carboxytetramethylrhodamine (TAMRA) fluorophore was cleaved in large quantities and could not bind to the handle chain on DNSs, inducing a low FA value. In contrast, in the absence of miR-155, T2 could not be released and the trans-cleavage activity of CRISPR-Cas12a could not be activated. The TAMRA-modified ssDNA probe remained intact and was complementary to the handle chain on the DNSs, and a high FA value was obtained. Thus, miR-155 was detected through the obviously decreased FA value with a low limit of detection (LOD) of 40 pM. Impressively, the sensitivity of this method was greatly improved about 322 times by CRISPR-Cas12a, confirming the amazing signal amplification ability of CRISPR-Cas12a. At the same time, the SARS-CoV-2 nucleocapsid protein was detected by the strategy successfully, indicating that this method was general. Moreover, this method has been applied in the analysis of miR-155 in human serum and the lysates of cells, which provides a new avenue for the sensitive determination of biomarkers in biochemical research and disease diagnosis.
Collapse
Affiliation(s)
- Tian Jin Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, P. R. China
| | - Jia Li Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, P. R. China
| | - Yu Jie Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, P. R. China
| | - Kai Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing, P. R. China
| |
Collapse
|
3
|
Xiao X, Zhen S. Recent advances in fluorescence anisotropy/polarization signal amplification. RSC Adv 2022; 12:6364-6376. [PMID: 35424604 PMCID: PMC8982260 DOI: 10.1039/d2ra00058j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 12/25/2022] Open
Abstract
Fluorescence anisotropy/polarization is an attractive and versatile technique based on molecular rotation in biochemical/biophysical systems. Traditional fluorescence anisotropy/polarization assays showed relatively low sensitivity for molecule detection, because widespread molecular masses are too small to produce detectable changes in fluorescence anisotropy/polarization value. In this review, we discuss in detail how the potential of fluorescence anisotropy/polarization signal approach considerably expanded through the implementation of mass amplification, recycle the target amplification, fluorescence probes structure-switching amplification, resonance energy transfer amplification, and provide perspectives at future directions and applications.
Collapse
Affiliation(s)
- Xue Xiao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University 610041 Chengdu PR China
| | - Shujun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University 400715 Chongqing PR China
| |
Collapse
|
4
|
Hendrickson OD, Taranova NA, Zherdev AV, Dzantiev BB, Eremin SA. Fluorescence Polarization-Based Bioassays: New Horizons. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7132. [PMID: 33322750 PMCID: PMC7764623 DOI: 10.3390/s20247132] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Fluorescence polarization holds considerable promise for bioanalytical systems because it allows the detection of selective interactions in real time and a choice of fluorophores, the detection of which the biosample matrix does not influence; thus, their choice simplifies and accelerates the preparation of samples. For decades, these possibilities were successfully applied in fluorescence polarization immunoassays based on differences in the polarization of fluorophore emissions excited by plane-polarized light, whether in a free state or as part of an immune complex. However, the results of recent studies demonstrate the efficacy of fluorescence polarization as a detected signal in many bioanalytical methods. This review summarizes and comparatively characterizes these developments. It considers the integration of fluorescence polarization with the use of alternative receptor molecules and various fluorophores; different schemes for the formation of detectable complexes and the amplification of the signals generated by them. New techniques for the detection of metal ions, nucleic acids, and enzymatic reactions based on fluorescence polarization are also considered.
Collapse
Affiliation(s)
- Olga D. Hendrickson
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Nadezhda A. Taranova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Sergei A. Eremin
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
- Department of Chemical Enzymology, Chemical Faculty, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|