1
|
Farahmandzadeh F, Kermanshahian K, Molahosseini E, Molaei M, Karimipour M. Highly fluorescent CdTe/ZnSe quantum dot-based "turn-off" sensor for the on-site rapid detection of Lead ions in aqueous medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124914. [PMID: 39137711 DOI: 10.1016/j.saa.2024.124914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Lead (Pb) is a heavy metal known for its adverse effects on both human health and the environment. In recent years, the industrial utilization of Pb2+ has surged, underscoring the imperative need for efficient measurement methods. In this study, a rapid and simple photochemical method was used to synthesize thioglycolic acid (TGA)-stabilized CdTe/ZnSe core-shell quantum dots (QDs). These CdTe/ZnSe QDs emit vibrant green fluorescence and exhibit remarkable quenching in the presence of Pb2+ ions. This property enables the development of an on-site on/off sensor without the necessity of additional modifications. The proposed sensor possesses an outstanding sensitivity to Pb2+, with a detection limit and linear range of 31.8 nM and 50 nM-10 µM, respectively. Importantly, the selectivity of this fluorescence-based sensor was validated by analyzing various positively and negatively charged ions. Furthermore, the developed sensor showed reliable performance against real river, agricultural, and tap water, as confirmed by Inductively Coupled Plasma (ICP) analysis. Additionally, CdTe/ZnSe QDs immobilized on glass slides were successfully employed for on-site water sample analysis, providing a versatile solution for environmental monitoring.
Collapse
Affiliation(s)
- Farzad Farahmandzadeh
- Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Kimia Kermanshahian
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran
| | | | - Mehdi Molaei
- Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Masoud Karimipour
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
2
|
Zhang Z, Wang Q, Zhang H, Wang S, Ma X, Wang H. Golm1 facilitates the CaO2-DOPC-DSPE200-PEI -CsPbBr3 QDs -induced apoptotic death of hepatocytes through the stimulation of mitochondrial autophagy and mitochondrial reactive oxygen species production through interactions with P53/Beclin-1/Bcl-2. Chem Biol Interact 2024; 398:111076. [PMID: 38815669 DOI: 10.1016/j.cbi.2024.111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Mitophagy is a distinct physiological process that can have beneficial or deleterious effects in particular tissues. Prior research suggests that mitophagic activity can be triggered by CaO2-PM-CsPbBr3 QDs, yet the specific role that mitophagy plays in hepatic injury induced by CaO2-PM-CsPbBr3 QDs has yet to be established. Accordingly, in this study a series of mouse model- and cell-based experiments were performed that revealed the ability of CaO2-PM-CsPbBr3 QDs to activate mitophagic activity. Golm1 was upregulated in response to CaO2-PM-CsPbBr3 QDs treatment, and overexpressing Golm1 induced autophagic flux in the murine liver and hepatocytes, whereas knocking down Golm1 had the opposite effect. CaO2-PM-CsPbBr3 QDs were also able to Golm1 expression, in turn promoting the degradation of P53 and decreasing the half-life of this protein. Overexpressing Golm1 was sufficient to suppress the apoptotic death of hepatocytes in vitro and in vivo, whereas the knockdown of Golm1 had the opposite effect. The ability of Golm1 to promote p53-mediated autophagy was found to be associated with the disruption of Beclin-1 binding to Bcl-2, and the Golm1 N-terminal domain was determined to be required for p53 interactions, inducing autophagic activity in a manner independent of helicase activity or RNA binding. Together, these results indicate that inhibiting Golm1 can promote p53-dependent autophagy via disrupting Beclin-1 binding to Bcl-2, highlighting a novel approach to mitigating liver injury induced by CaO2-PM-CsPbBr3 QDs.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450045, Henan Province, China.
| | - Qinglong Wang
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan Province, China
| | - Haibo Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450045, Henan Province, China
| | - Shengchao Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450045, Henan Province, China
| | - Xia Ma
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan Province, China
| | - Hui Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450045, Henan Province, China.
| |
Collapse
|
3
|
Safarnejad A, Abbasi-Moayed S, Fahimi-Kashani N, Hormozi-Nezhad MR, Abdollahi H. Modeling and optimization of the ratio of fluorophores: a step towards enhancing the sensitivity of ratiometric probes. Mikrochim Acta 2024; 191:327. [PMID: 38740592 DOI: 10.1007/s00604-024-06403-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
In the ratiometric fluorescent (RF) strategy, the selection of fluorophores and their respective ratios helps to create visual quantitative detection of target analytes. This study presents a framework for optimizing ratiometric probes, employing both two-component and three-component RF designs. For this purpose, in a two-component ratiometric nanoprobe designed for detecting methyl parathion (MP), an organophosphate pesticide, yellow-emissive thioglycolic acid-capped CdTe quantum dots (Y-QDs) (analyte-responsive), and blue-emissive carbon dots (CDs) (internal reference) were utilized. Mathematical polynomial equations modeled the emission profiles of CDs and Y-QDs in the absence of MP, as well as the emission colors of Y-QDs in the presence of MP separately. In other two-/three-component examples, the detection of dopamine hydrochloride (DA) was investigated using an RF design based on blue-emissive carbon dots (B-CDs) (internal reference) and N-acetyl L-cysteine functionalized CdTe quantum dots with red/green emission colors (R-QDs/G-QDs) (analyte-responsive). The colors of binary/ternary mixtures in the absence and presence of MP/DA were predicted using fitted equations and additive color theory. Finally, the Euclidean distance method in the normalized CIE XYZ color space calculated the distance between predicted colors, with the maximum distance defining the real-optimal concentration of fluorophores. This strategy offers a more efficient and precise method for determining optimal probe concentrations compared to a trial-and-error approach. The model's effectiveness was confirmed through experimental validation, affirming its efficacy.
Collapse
Affiliation(s)
- Azam Safarnejad
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Samira Abbasi-Moayed
- Department of Analytical Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran
| | | | - Mohammad Reza Hormozi-Nezhad
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran.
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, 14588-89694, Iran.
| | - Hamid Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| |
Collapse
|
4
|
Davoodi-Rad K, Shokrollahi A, Shahdost-Fard F, Azadkish K, Madani-Nejad E. A smartphone-based colorimetric assay using Cu-tannic acid nanosheets (Cu-TA NShs) as a laccase-mimicking nanozyme for visual detection of quercetin in vegetables. Mikrochim Acta 2024; 191:168. [PMID: 38418635 DOI: 10.1007/s00604-024-06238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
The interaction of Cu-tannic acid nanosheets (Cu-TA NShs) as nanozyme in a surfactant solution of CTAB under relatively acidic conditions is shown to exhibit a catalytic effect on quercetin (Qur). This catalytic property of Cu-TA NShs, which mimics laccase enzyme with many advantages, has been applied to developing a selective colorimetric sensor for the determination of trace amounts of Qur in vegetable samples. This strategy presents a desirable linear relationship between the absorbance signal intensity and the concentrations of Qur from 0.350 to 32.09 µM with a detection limit (LOD) of 0.064 µM (S/N = 3). The feasibility of the proposed portable colorimetric sensor for in situ analysis of the real samples has been validated with the high-performance liquid chromatography (HPLC) method as reference method, and two-tailed test (t test) statistical analysis certifies good agreement between the results. This enzyme-free and sensitive naked-eye sensor with the smartphone-based color map is promising to provide technical support for the rapid and visual detection of Qur in vegetables.
Collapse
Affiliation(s)
- Kowsar Davoodi-Rad
- Chemistry Department, Yasouj University, P.O. Box, Yasouj, 75918-74831, Iran
| | | | - Faezeh Shahdost-Fard
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
| | - Kamal Azadkish
- Chemistry Department, Yasouj University, P.O. Box, Yasouj, 75918-74831, Iran
| | - Elham Madani-Nejad
- Chemistry Department, Yasouj University, P.O. Box, Yasouj, 75918-74831, Iran
| |
Collapse
|
5
|
Wu X, Zhang X, Ma J, Zhang Y, Li M. A ratiometric fluorescence sensor based on the inner filtration effect of gold nanoparticles on quantum dots for monitoring dopamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123374. [PMID: 37699327 DOI: 10.1016/j.saa.2023.123374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
In this study, a smart phone assisted ratiometric fluorescence sensor was designed for detecting dopamine (DA). The ratiometric fluorescence sensor was prepared by simple physical mixing green quantum dots (GQDS) and red quantum dots (RQDS). DA could induce gold nanoparticles (AuNPs) aggregate via hydrogen-bonding interactions, and further changed the absorption spectrum of gold nanoparticles to overlap with a certain emission spectrum of ratiometric fluorescence sensor. AuNPs had inner filtration effect (IFE) on the ratiometric fluorescence sensor. Due to the IFE, the dispersive AuNPs could quench GQDS, whereas the clustered AuNPs could quench RQDS. With the addition of DA, the color of ratiometric fluorescence changed from orange red to green. To simplify the detection process, a smartphone was employed to detecting DA in human urine by measuring RGB value of fluorescence color changes with a detection limit of 86 nM. This proposed method has the advantages of low cost, easy prevalence and simple operation, thus provides a great promise for rapid detection of biomarker in biological samples.
Collapse
Affiliation(s)
- Xia Wu
- College of Science, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Xi Zhang
- College of Science, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Jianbo Ma
- Jinan Special Equipment Inspection and Research, Jinan, Shandong 250101, PR China
| | - Yunyi Zhang
- College of Science, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Ming Li
- College of Science, Hebei Agricultural University, Baoding, Hebei 071001, PR China; Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Baoding, Hebei 071001, PR China.
| |
Collapse
|
6
|
Zhang X, Wu X, Xiao B, Qin J. Terahertz determination of imidacloprid in soil based on a metasurface sensor. OPTICS EXPRESS 2023; 31:37778-37788. [PMID: 38017900 DOI: 10.1364/oe.503624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/15/2023] [Indexed: 11/30/2023]
Abstract
Pesticides in soil are continuously one of the most studied analytes due to their environmental and human health effects. Thus the detection of pesticides in soil is an important means to control and assess soil quality. Here, we theoretically and experimentally present a novel method for the determination of imidacloprid in soil by using a metasurface sensor operating at terahertz frequencies. The metasurface shows a resonance peak at 880 GHz and the electric field at the peak is strongly localized and concentrated in the gap of split I-shaped resonator. The detection of complex refractive index shows that the position and the transmittance of resonance peak are depend on the change in the complex refractive index. The measurement of imidacloprid concentration in soil demonstrates that both the frequency shift and the transmittance change at peak increase almost linearly with the increasing of imidacloprid concentration ranging from 0.25% to 2%. In this case, the frequency shift reaches 97 GHz and the transmittance change at peak is as high as 30.9%. Our work enables the determination of imidacloprid in soil at terahertz frequencies with good reliability and high sensitivity, showing the potential application of terahertz spectroscopy in environmental monitoring.
Collapse
|
7
|
Liu ML, Chen ZJ, Huang XQ, Wang H, Zhao JL, Shen YD, Luo L, Wen XW, Hammock B, Xu ZL. A bispecific nanobody with high sensitivity/efficiency for simultaneous determination of carbaryl and its metabolite 1-naphthol in the soil and rice samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122265. [PMID: 37517641 PMCID: PMC10529271 DOI: 10.1016/j.envpol.2023.122265] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The simultaneous determination of carbaryl and its metabolite 1-naphthol is essential for risk assessment of pesticide exposure in agricultural and environmental samples. Herein, several bispecific nanobodies (BsNbs) with different lengths of hydrophilic linkers and junction sites were prepared and characterized for the simultaneous recognition of carbaryl and its metabolite 1-naphthol. It was found that the affinity of BsNbs to the analytes could be regulated by controlling linker length and linking terminal. Additionally, molecular simulation revealed that linker lengths affected the conformation of BsNbs, leading to alteration in sensitivity. The BsNb with G4S linker, named G4S-C-N-VHH, showing good thermal stability and sensitivity was used to develop a bispecific indirect competitive enzyme-linked immunosorbent assay (Bic-ELISA). The assay demonstrated a limit of detection of 0.8 ng/mL for carbaryl and 0.4 ng/mL for 1-naphthol in buffer system. Good recoveries from soil and rice samples were obtained, ranging from 80.0% to 112.7% (carbaryl) and 76.5%-110.8% (1-naphthol), respectively. Taken together, this study firstly provided a BsNb with high sensitivity and efficiency against environmental pesticide and its metabolite, and firstly used molecular dynamics simulation to explore the influence of linker on recognition. The results are valuable for the application of immunoassay with high efficiency in the fields of environment and agriculture.
Collapse
Affiliation(s)
- Min-Ling Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Xiao-Qing Huang
- Guangzhou Institute of Food Inspection, Guangzhou, 510410, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jin-Li Zhao
- Guangzhou Institute of Food Inspection, Guangzhou, 510410, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Wei Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Bruce Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Yuan H, Li Y, Lv J, An Y, Guan D, Liu J, Tu C, Wang X, Zhou H. Recent Advances in Fluorescent Nanoprobes for Food Safety Detection. Molecules 2023; 28:5604. [PMID: 37513475 PMCID: PMC10385937 DOI: 10.3390/molecules28145604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Fluorescent nanoprobes show similar fluorescence properties to traditional organic dyes, but the addition of nanotechnology accurately controls the size, shape, chemical composition, and surface chemistry of the nanoprobes with unique characteristics and properties, such as bright luminescence, high photostability, and strong biocompatibility. For example, modifying aptamers or antibodies on a fluorescent nanoprobe provides high selectivity and specificity for different objects to be tested. Fluorescence intensity, life, and other parameters of targets can be changed by different sensing mechanisms based on the unique structural and optical characteristics of fluorescent nanoprobes. What's more, the detection of fluorescent nanoprobes is cost-saving, simple, and offers great advantages in rapid food detection. Sensing mechanisms of fluorescent nanoprobes were introduced in this paper, focusing on the application progress in pesticide residues, veterinary drug residues, heavy metals, microbes, mycotoxins, and other substances in food safety detection in recent years. A brief outlook for future development was provided as well.
Collapse
Affiliation(s)
- Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yutong Li
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaqi Lv
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, China
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Yunhe An
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, China
| | - Di Guan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, China
| | - Jia Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, China
| | - Chenxiao Tu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huijuan Zhou
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, China
| |
Collapse
|
9
|
Wang J, Gong Y, Yan X, Han R, Chen H. CdTe-QDs Affect Reproductive Development of Plants through Oxidative Stress. TOXICS 2023; 11:585. [PMID: 37505551 PMCID: PMC10386043 DOI: 10.3390/toxics11070585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
With the continuous development of industry, an increasing number of nanomaterials are widely used. CdTe-QDs is a nanomaterial with good optical properties, but its release into the natural environment may pose a potential threat. The toxicity of nanoparticles in plants is beginning to be questioned, and the effect on phytotoxicity is unclear. In this study, we simulated air pollution and soil pollution (CdTe-QDs concentrations of 0, 0.2, 0.4, 0.8 mmol/L) by spraying and watering the seedlings, respectively. We determined the transport pathways of CdTe-QDs in Arabidopsis thaliana and their effects on plant reproductive growth. Spraying CdTe-QDs concentration >0.4 mmol/L significantly inhibited the formation of fruit and decreased the number of seeds. Observation with a laser confocal scanning microscope revealed that CdTe-QDs were mainly transported in plants through the vascular bundle, and spraying increased their accumulation in the anthers and ovaries. The expression level of genes associated with Cd stress was analyzed through RT-qPCR. CdTe-QDs significantly increased the expression levels of 10 oxidative stress-related genes and significantly decreased the expression levels of four cell-proliferation-related genes. Our results reveal for the first time the transport of CdTe-QDs in Arabidopsis flowers and demonstrate that QDs can cause abnormal pollen morphology, form defects of pollen vitality, and inhibit pollen tube growth in Arabidopsis through oxidative damage. These phenomena ultimately lead to the inability of Arabidopsis to complete the normal fertilization process and affect the reproductive growth of the plant.
Collapse
Affiliation(s)
- Jianhua Wang
- Upgrading Office of Modern College of Humanities and Sciences of Shanxi Normal University, Linfen 041000, China
- Shanxi Key Laboratory of Plant Macromolecules Stress Response, Taiyuan 030000, China
| | - Yan Gong
- College of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Xiaoyan Yan
- Shanxi Key Laboratory of Plant Macromolecules Stress Response, Taiyuan 030000, China
- College of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Rong Han
- Shanxi Key Laboratory of Plant Macromolecules Stress Response, Taiyuan 030000, China
- College of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Huize Chen
- Shanxi Key Laboratory of Plant Macromolecules Stress Response, Taiyuan 030000, China
- College of Life Science, Shanxi Normal University, Taiyuan 030000, China
| |
Collapse
|
10
|
Li Z, Liang S, Zhou L, Luo F, Lou Z, Chen Z, Zhang X, Yang M. A Turn-On Fluorescence Sensor Based on Nitrogen-Doped Carbon Dots and Cu 2+ for Sensitively and Selectively Sensing Glyphosate. Foods 2023; 12:2487. [PMID: 37444225 DOI: 10.3390/foods12132487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Glyphosate has excellent herbicidal activity, and its extensive use may induce residue in the environment and enter into humans living through the food chain, causing negative impact. Here, water-soluble 1.55 nm size nitrogen-doped carbon quantum dots (NCDs) with strong blue fluorescence were synthesized using sodium citrate and adenine. The maximum excitation and emission wavelengths of NCDs were 380 nm and 440 nm, respectively. The above synthesized NCDs were first used for the construction of a fluorescence sensor for glyphosate detection. It was found that Cu2+ could quench the fluorescence of NCDs effectively through the photoinduced electron transfer (PET) process, which was confirmed using fluorescence lifetime measurements. Additionally, the fluorescence was restored with the addition of glyphosate. Hence, a sensitive turn-on fluorescence sensor based on NCDs/Cu2+ for glyphosate analysis was developed. The LODs of glyphosate for water and rice samples were recorded as 0.021 μg/mL and 0.049 μg/mL, respectively. The sensor was applied successfully for ultrasensitive and selective detection of glyphosate in environmental water and rice samples with satisfied recoveries from 82.1% to 113.0% using a simple sample pretreatment technique. The proposed strategy can provide a significant potential for monitoring glyphosate residue in water and agricultural product samples.
Collapse
Affiliation(s)
- Ziqiang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Liang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zhengyun Lou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
11
|
Le Nhat Trang N, Thi Nguyet Nga D, Tufa LT, Tran VT, Hung TT, Ngoc Phan V, Pham TN, Hoang VT, Le AT. Unveiling the effect of crystallinity and particle size of biogenic Ag/ZnO nanocomposites on the electrochemical sensing performance of carbaryl detection in agricultural products. RSC Adv 2023; 13:8753-8764. [PMID: 36936823 PMCID: PMC10016934 DOI: 10.1039/d3ra00399j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
In this study, bio-Ag/ZnO NCs were synthesized via a microwave-assisted biogenic electrochemical method using mangosteen (Garcinia mangostana) peel extract as a biogenic reducing agent for the reduction of Zn2+ and Ag+ ions to form hybrid nanoparticles. The as-synthesized NC samples at three different microwave irradiation temperatures (Z 70, Z 80, Z 90) exhibited a remarkable difference in size and crystallinity that directly impacted their electrocatalytic behaviors as well as electrochemical sensing performance. The obtained results indicate that the Z 90 sample showed the highest electrochemical performance among the investigated samples, which is attributed to the improved particle size distribution and crystal microstructure that enhanced charge transfer and the electroactive surface area. Under the optimal conditions for carbaryl pesticide detection, the proposed nanosensor exhibited a high electrochemical sensitivity of up to 0.303 μA μM-1 cm-2 with a detection limit of LOD ∼0.27 μM for carbaryl pesticide detection in a linear range of 0.25-100 μM. Overall, the present work suggests that bio-Ag/ZnO NCs are a potential candidate for the development of a high-performance electrochemical-based non-enzymatic nanosensor with rapid monitoring, cost-effectiveness, and eco-friendly to detect carbaryl pesticide residues in agricultural products.
Collapse
Affiliation(s)
- Nguyen Le Nhat Trang
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Dao Thi Nguyet Nga
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Lemma Teshome Tufa
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University Daejeon 34134 Republic of Korea
| | - Van Tan Tran
- Faculty of Biotechnology, Chemical and Environmental Engineering (BCEE), Phenikaa University Hanoi 12116 Viet Nam
| | - Thuan-Tran Hung
- Center for Advanced Materials and Environmental Technology, National Center for Technological Progress Hanoi 12116 Viet Nam
| | - Vu Ngoc Phan
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Biotechnology, Chemical and Environmental Engineering (BCEE), Phenikaa University Hanoi 12116 Viet Nam
| | - Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Van-Tuan Hoang
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering (MSE), Phenikaa University Hanoi 12116 Vietnam
| |
Collapse
|
12
|
Davoodi-Rad K, Shokrollahi A, Shahdost-Fard F, Azadkish K. Copper-Guanosine Nanorods (Cu-Guo NRs) as a Laccase Mimicking Nanozyme for Colorimetric Detection of Rutin. BIOSENSORS 2023; 13:374. [PMID: 36979586 PMCID: PMC10046739 DOI: 10.3390/bios13030374] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Inspired by laccase activity, herein, Cu-guanosine nanorods (Cu-Guo NRs) have been synthesized for the first time through a simple procedure. The activity of the Cu-Guo NR as the laccase mimicking nanozyme has been examined in the colorimetric sensing of rutin (Rtn) by a novel and simple spectrophotometric method. The distinct changes in the absorbance signal intensity of Rtn and a distinguished red shift under the optimum condition based on pH and ionic strength values confirmed the formation of the oxidized form of Rtn (o-quinone) via laccase-like nanozyme activity of Cu-Guo NRs. A vivid and concentration-dependent color variation from green to dark yellow led to the visual detection of Rtn in a broad concentration range from 770 nM to 54.46 µM with a limit of detection (LOD) of 114 nM. The proposed methodology was successfully applied for the fast tracing of Rtn in the presence of certain common interfering species and various complex samples such as propolis dry extract, human biofluids, and dietary supplement tablets, with satisfactory precision. The sensitivity and selectivity of the developed sensor, which are bonuses in addition to rapid, on-site, cost-effective, and naked-eye determination of Rtn, hold great promise to provide technical support for routine analysis in the real world.
Collapse
Affiliation(s)
| | | | | | - Kamal Azadkish
- Chemistry Department, Yasouj University, Yasouj 75914-353, Iran (K.A.)
| |
Collapse
|
13
|
Amatatongchai M, Thimoonnee S, Somnet K, Chairam S, Jarujamrus P, Nacapricha D, Lieberzeit PA. Origami 3D-microfluidic paper-based analytical device for detecting carbaryl using mesoporous silica-platinum nanoparticles with a molecularly imprinted polymer shell. Talanta 2023; 254:124202. [PMID: 36549139 DOI: 10.1016/j.talanta.2022.124202] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Herein, we present a novel Origami 3D-μPAD for colorimetric carbaryl detection using a super-efficient catalyst, namely mesoporous silica-platinum nanoparticles coated with a molecularly imprinted polymer (MSN-PtNPs@MIP). Morphological and structural characterization reveals that coating MIP on the MSN-PtNPs surface significantly increases the selective area, leading to larger numbers of imprinting sites for improved sensitivity and selectivity in determining carbaryl. The as-prepared MSN-PtNPs@MIP was used for catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2. Carbaryl selectively binds to the cavities embedded on the MSN-PtNPs surface and subsequently inhibits TMB oxidation leading the color to change to light blue. The change of reaction color from dark blue to light blue depends on the concentration of carbaryl within the 3D-μPAD detection zone. This design integrates the advantages of highly efficient sample delivery through micro channels (top layer) and efficient partition/separation paths (bottom layer) of the cellulose substrate to achieve both improved detection sensitivity and selectivity. Assay on the Origami 3D-μPAD can determine carbaryl by ImageJ detection, over a dynamic range of 0.002-20.00 mg kg-1, with a very low limit of detection at 1.5 ng g-1. The developed 3D-μPAD exhibit high accuracy when applied to detect carbaryl in fruits, with satisfactory recoveries from 90.1% to 104.0% and relative differences from the reference HPLC values less than 5.0%. Furthermore, the fabricated Origami 3D-μPAD provides reliable durability and good reproducibility (3.19% RSD for fifteen devices).
Collapse
Affiliation(s)
- Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Thailand.
| | - Suphatsorn Thimoonnee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Kanpitcha Somnet
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Sanoe Chairam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Duangjai Nacapricha
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, 1090, Vienna, Austria
| |
Collapse
|
14
|
Silver Nanoparticle Based Efficient Colorimetric Assay for Carbaryl - An Insecticide. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Fauzi NIM, Fen YW, Eddin FBK, Daniyal WMEMM. Structural and Optical Properties of Graphene Quantum Dots-Polyvinyl Alcohol Composite Thin Film and Its Potential in Plasmonic Sensing of Carbaryl. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4105. [PMID: 36432389 PMCID: PMC9698828 DOI: 10.3390/nano12224105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
In this study, graphene quantum dots (GQDs) and polyvinyl alcohol (PVA) composite was prepared and then coated on the surface of gold thin film via the spin coating technique. Subsequently, Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), and ultraviolet-visible spectroscopy (UV-Vis) were adopted to understand the structure, surface morphology, and optical properties of the prepared samples. The FT-IR spectral analysis revealed important bands, such as O-H stretching, C=O stretching, C-H stretching, and O=C=O stretching vibrations. The surface roughness of the GQDs-PVA composite thin film was found to be increased after exposure to carbaryl. On the other hand, the optical absorbance of the GQDs-PVA thin film was obtained and further analysis was conducted, revealing a band gap Eg value of 4.090 eV. The sensing potential of the thin film was analyzed using surface plasmon resonance (SPR) spectroscopy. The findings demonstrated that the developed sensor's lowest detection limit for carbaryl was 0.001 ppb, which was lower than that previously reported, i.e., 0.007 ppb. Moreover, other sensing performance parameters, such as full width at half maximum, detection accuracy, and signal-to-noise ratio, were also investigated to evaluate the sensor's efficiency.
Collapse
Affiliation(s)
- Nurul Illya Muhamad Fauzi
- Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yap Wing Fen
- Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | |
Collapse
|
16
|
Wang L, Wen L, Chen Y, Wang F, Li C. Construction of ratiometric fluorescence sensor and test strip with smartphone based on molecularly imprinted dual-emission quantum dots for the selective and sensitive detection of domoic acid. CHEMOSPHERE 2022; 304:135405. [PMID: 35724721 DOI: 10.1016/j.chemosphere.2022.135405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Domoic acid (DA), a highly neurotoxic metabolite produced by phytoplankton, contaminates seafood products and threats humankind. Herein, we have proposed a molecular imprinting fluorescence sensor with internal standard ratiometric mode for sensing of DA in seafood and seawater. In this study, the silicon-coated blue luminous carbon dots (B-CDs@SiO2) and CdTe acted as reference probe (430 nm) and response probe (610 nm), respectively. Subsequently, the two probes were assembled and the molecularly imprinted polymer (MIP) was introduced as the recognition element to construct the core component of the sensor (B-CDs@SiO2/CdTe MIP). When DA exists, it can be specifically adsorbed by the amino-rich imprinted sites on surface of B-CDs@SiO2/CdTe MIP and further assembled into the hydrogen-bonds complex, which can lead to the decrease in the fluorescence signal of MIP at 610 nm owing to the electron transfer from CdTe to DA. However, the fluorescence signal of MIP at 430 nm is not affected because of the protection of silica layer. Based on this principle, the designed internal standard ratiometric fluorescence sensor reveals high sensitivity, excellent selectivity, and wide linear range of 0.03-1 μM with a detection limit of 18 nM. Further, the portable fluorescent test strip with smartphone has been designed for semi-quantitative sensing of DA, which has potential application prospects for field analysis.
Collapse
Affiliation(s)
- Linjie Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Lejuan Wen
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yixin Chen
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Fei Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.
| | - Caolong Li
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.
| |
Collapse
|
17
|
Rakkhun W, Jantra J, Cheubong C, Teepoo S. Colorimetric test strip cassette readout with a smartphone for on-site and rapid screening test of carbamate pesticides in vegetables. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
18
|
Albalawi I, Alatawi H, Alsefri S, Moore E. Electrochemical Synthesis of Reduced Graphene Oxide/Gold Nanoparticles in a Single Step for Carbaryl Detection in Water. SENSORS 2022; 22:s22145251. [PMID: 35890930 PMCID: PMC9317711 DOI: 10.3390/s22145251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022]
Abstract
In this study, an in situ synthesis approach based on electrochemical reduction and ion exchange was employed to detect carbaryl species using a disposable, screen-printed carbon electrode fabricated with nanocomposite materials. Reduced graphene oxide (rGO) was used to create a larger electrode surface and more active sites. Gold nanoparticles (AuNPs,) were incorporated to accelerate electron transfer and enhance sensitivity. A cation exchange Nafion polymer was used to enable the adhesion of rGO and AuNPs to the electrode surface and speed up ion exchange. Cyclic voltammetry (CV), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), electrical impedance spectroscopy (EIS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were performed to study the electrochemical and physical properties of the modified sensor. In the presence of differential pulse voltammetry (DPV), an rGO/AuNP/Nafion-modified electrode was effectively used to measure the carbaryl concentration in river and tap water samples. The developed sensor exhibited superior electrochemical performance in terms of reproducibility, stability, efficiency and selectivity for carbaryl detection with a detection limit of 0.2 µM and a concentration range between 0.5µM and 250 µM. The proposed approach was compared to capillary electrophoresis with ultraviolet detection (CE-UV).
Collapse
|
19
|
Khachornsakkul K, Phuengkasem D, Palkuntod K, Sangkharoek W, Jamjumrus O, Dungchai W. A Simple Counting-Based Measurement for Paper Analytical Devices and Their Application. ACS Sens 2022; 7:2093-2101. [PMID: 35736786 DOI: 10.1021/acssensors.2c01003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This work introduces the concept of a counting-based measurement on paper analytical devices (cPADs) to improve the utilization of numerous reactions. The design of cPADs consists of two layers of paper substrates; the first layer contains a central sample zone combined with a radial surrounded by 12 detection zones that are predeposited with the various reagents, and the second layer acts as a connection channel between the sample zone and each detection zone. The solution can vertically flow from the first to the second layer and then move through the area to each subsequent detection zone. The analyte level can be evaluated by counting the number of detection zones that change color from a blank signal. Furthermore, our cPADs exhibit a capability of implementation for a broad series of reactions. Compared to the dPAD technique, some reactions that are possibly difficult to apply in such devices can be wholly enabled in our devices. The final color reaction on cPADs can apparently occur due to its identity. We applied this technique to the monitoring of carbaryl (CBR) and copper ions (Cu2+) using different reactions, including azo-coupling and complexation, respectively. Accordingly, this indicates an excellent result validated using the more traditional methods. Our cPADs can be applied for rapid screening of both CBR and Cu2+ in water samples with outstanding accuracy and precision using a naked-eye measurement by a relatively unskilled person. We offer a simple platform on PADs for rapid screening, combining high cost-effectiveness within a miniaturized platform designed for use with onsite applications, which is thus suitable for several different reactions.
Collapse
Affiliation(s)
- Kawin Khachornsakkul
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Danai Phuengkasem
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Kitiya Palkuntod
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Wuttichai Sangkharoek
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Opor Jamjumrus
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Wijitar Dungchai
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| |
Collapse
|
20
|
Deng G, Wang S, Chen H, Ren L, Liang K, Wei L, Long W, Yang J, Guo L, Han X, She Y, Fu H. Digital image colorimetry in combination with chemometrics for the detection of carbaryl based on the peroxidase-like activity of nanoporphyrins and the etching process of gold nanoparticles. Food Chem 2022; 394:133495. [PMID: 35753252 DOI: 10.1016/j.foodchem.2022.133495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Carbaryl is a typical carbamate pesticide that plays an essential role in agricultural production, but its residues cause serious harm to the environment and human health. Here, we developed a polychromatic colorimetric sensor based on ZnTPyP-DTAB peroxidase activity and gold nano-bipyramids (Au NBPs) etching to detect carbaryl. ZnTPyP-DTAB catalyzes the decomposition of H2O2 to hydroxyl radicals, and Au NBPs are etched. The coordination of zinc and nitrogen in nanometer porphyrins was affected by the steric effects of carbaryl, which resulted in decreased activity of ZnTPyP-DTAB peroxidase. The detection limit of carbaryl was 0.26 mg/kg. The recoveries of carbaryl in reaal sample ranged from 91 % to 107% (RSD ≤ 0.7%). The sensor platform displayed a series of high-resolution multicolor variations of rainbow colors within the above concentration range. The rich color variation facilitates the acquisition of digital images. RGB value transformation combined with partial least squares regression model can accurately and quantitatively detect carbaryl in vegetables, fruits and Chinese medicinal materials.
Collapse
Affiliation(s)
- Gaoqiong Deng
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Shuo Wang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Lixue Ren
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Ke Liang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Liuna Wei
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, PR China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, PR China.
| | - Xiaole Han
- Hubei Key Laboratory of Catalysis and Materials Science, South-Central MinZu University, Wuhan 430074, PR China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| |
Collapse
|
21
|
Shen Y, Wei Y, Zhu C, Cao J, Han DM. Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214442] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Evaluation of Structural and Optical Properties of Graphene Oxide-Polyvinyl Alcohol Thin Film and Its Potential for Pesticide Detection Using an Optical Method. PHOTONICS 2022. [DOI: 10.3390/photonics9050300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present work, graphene oxide (GO)–polyvinyl alcohol (PVA) composites thin film has been successfully synthesized and prepared by spin coating techniques. Then, the properties and morphology of the samples were characterized using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), and atomic force microscopy (AFM). Experimental FTIR results for GO–PVA thin film demonstrated the existence of important functional groups such as -CH2 stretching, C=O stretching, and O–H stretching. Furthermore, UV-Vis analysis indicated that the GO–PVA thin film had the highest absorbance that can be observed at wavelengths ranging from 200 to 500 nm with a band gap of 4.082 eV. The surface morphology of the GO–PVA thin film indicated the thickness increased when in contact with carbaryl. The incorporation of the GO–PVA thin film with an optical method based on the surface plasmon resonance (SPR) phenomenon demonstrated a positive response for the detection of carbaryl pesticide as low as 0.02 ppb. This study has successfully proposed that the GO–PVA thin film has high potential as a polymer nanomaterial-based SPR sensor for pesticide detection.
Collapse
|
23
|
Camilli L, Capista D, Eramo P, D'Archivio AA, Maggi MA, Lazzarini A, Crucianelli M, Passacantando M. Synthesis of hydrophilic carbon nanotube sponge via post-growth thermal treatment. NANOTECHNOLOGY 2022; 33:245707. [PMID: 35259735 DOI: 10.1088/1361-6528/ac5bb7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Clean water is vital for healthy ecosystems, for human life and, in a broader sense, it is directly linked to our socio-economic development. Nevertheless, climate change, pollution and increasing world population will likely make clean water scarcer in the near future. Consequently, it becomes imperative to develop novel materials and more efficient ways of treating waste and contaminated water. Carbon nanotube (CNT) sponges, for example, are excellent in removing oleophilic contaminants; however, due to their super-hydrophobic nature, they are not as efficient when it comes to absorbing water-soluble substances. Here, by means of a scalable method consisting of simply treating CNT sponges at mild temperatures in air, we attach oxygen-containing functional groups to the CNT surface. The functionalized sponge becomes hydrophilic while preserving its micro- and macro-structure and can therefore be used to successfully remove toxic contaminants, such as pesticides, that are dissolved in water. This discovery expands the current range of applications of CNT sponges to those fields in which a hydrophilic character of the sponge is more suitable.
Collapse
Affiliation(s)
- Luca Camilli
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome I-00133, Italy
| | - Daniele Capista
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, Coppito, L'Aquila I-67100, Italy
| | - Piergiorgio Eramo
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, Coppito, L'Aquila I-67100, Italy
| | - Angelo Antonio D'Archivio
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, Coppito, L'Aquila I-67100, Italy
| | - Maria Anna Maggi
- Hortus Novus, Via Campo Sportivo 2, Canistro (AQ) I-67050, Italy
| | - Andrea Lazzarini
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, Coppito, L'Aquila I-67100, Italy
| | - Marcello Crucianelli
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, Coppito, L'Aquila I-67100, Italy
| | - Maurizio Passacantando
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, Coppito, L'Aquila I-67100, Italy
| |
Collapse
|
24
|
Chen J, Liu Z, Fang J, Wang Y, Cao Y, Xu W, Ma Y, Meng X, Wang B. A turn-on fluorescence biosensor for sensitive detection of carbaryl using flavourzyme-stabilized gold nanoclusters. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Chen ZJ, Wu HL, Shen YD, Wang H, Zhang YF, Hammock B, Li ZF, Luo L, Lei HT, Xu ZL. Phosphate-triggered ratiometric fluoroimmunoassay based on nanobody-alkaline phosphatase fusion for sensitive detection of 1-naphthol for the exposure assessment of pesticide carbaryl. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127411. [PMID: 34629198 PMCID: PMC8877597 DOI: 10.1016/j.jhazmat.2021.127411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 05/21/2023]
Abstract
The excessive use of carbaryl has resulted in the risk of its exposure. In this study, we isolated six nanobodies (Nbs) from a camelid phage display library against the biomarker of carbaryl, 1-naphthol (1-NAP). Owing to its characteristics of easy genetic modifications, we produced a nanobody-alkaline phosphatase (Nb-CC4-ALP) fusion protein with good stability. A dual-emission system based ratiometric fluoroimmunoassay (RFIA) for quick and highly sensitive determination of 1-NAP was developed. Silicon nanoparticles (SiNPs) was used as an internal reference and for aggregation-induced emission enhancement (AIEE) of gold nanoclusters (AuNCs), while AuNCs could be quenched by MnO2 via oxidation. In the presence of ALP, ascorbic acid phosphate (AAP) can be transformed into ascorbic acid (AA), the later can etch MnO2 to recover the fluorescence of the AuNCs. Based on optimal conditions, the proposed assay showed 220-fold sensitivity improvement in comparison with conventional monoclonal antibody-based ELISA. The recovery test of urine samples and the validation by standard HPLC-FLD demonstrated the proposed assay was an ideal tool for screening 1-NAP and provided technical support for the monitoring of carbaryl exposure.
Collapse
Affiliation(s)
- Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Ling Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yi-Feng Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Bruce Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Zhen-Feng Li
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States; Guangdong Hengrui Pharmaceutical Co., Ltd., Guangzhou 510799, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
26
|
Liang N, Hu X, Li W, Wang Y, Guo Z, Huang X, Li Z, Zhang X, Zhang J, Xiao J, Zou X, Shi J. A dual-signal fluorescent sensor based on MoS 2 and CdTe quantum dots for tetracycline detection in milk. Food Chem 2022; 378:132076. [PMID: 35042115 DOI: 10.1016/j.foodchem.2022.132076] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023]
Abstract
A dual-signal fluorescent sensor was developed for tetracycline (TET) detection in milk with excellent reproducibility and stability. In this protocol, molybdenum disulfide quantum dots (MoS2 QDs) with blue fluorescence and cadmium telluride quantum dots (CdTe QDs) with yellow fluorescence were synthesized to establish the MoS2/CdTe-based sensor with two fluorescence emission peaks at 433 nm and 573 nm. With the addition of TET, the fluorescence of MoS2/CdTe were quenched by photoinduced electron transfer (PET), and the fluorescence of CdTe QDs were quenched more obvious than MoS2 QDs. With the strategy, a calibration curve was established between the TET concentration in the range of 0.1-1 μM and the ratio of fluorescence intensity at 573 nm and 433 nm (F573/F433). Furthermore, the dual-signal sensor was applied for TET detection in milk samples with the recovery of 95.53-104.22% and the relative standard deviation (RSD) less than 5%, indicating the strong application potential.
Collapse
Affiliation(s)
- Nini Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuetao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenting Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yueying Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ziang Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiukai Zhang
- Agro-Product Safety Research Center, Chinese Academy of Inspection and Quarantine, Beijing 102600, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, China.
| |
Collapse
|
27
|
Saboorizadeh B, Zare-Dorabei R, Shahbazi N. Green synthesis of carbon quantum dots and their application as a fluorometric sensor for highly selective determination of 6-mercaptopurine in biological samples. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Zhu L, Hao H, Ding C, Gan H, Jiang S, Zhang G, Bi J, Yan S, Hou H. A Novel Photoelectrochemical Aptamer Sensor Based on CdTe Quantum Dots Enhancement and Exonuclease I-Assisted Signal Amplification for Listeria monocytogenes Detection. Foods 2021; 10:2896. [PMID: 34945447 PMCID: PMC8701101 DOI: 10.3390/foods10122896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
To achieve the rapid detection of Listeria monocytogenes, this study used aptamers for the original identification and built a photoelectrochemical aptamer sensor using exonuclease-assisted amplification. Tungsten trioxide (WO3) was used as a photosensitive material, was modified with gold nanoparticles to immobilize complementary DNA, and amplified the signal by means of the sensitization effect of CdTe quantum dots and the shearing effect of Exonuclease I (Exo I) to achieve high-sensitivity detection. This strategy had a detection limit of 45 CFU/mL in the concentration range of 1.3 × 101-1.3 × 107 CFU/mL. The construction strategy provides a new way to detect Listeria monocytogenes.
Collapse
Affiliation(s)
- Liangliang Zhu
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| | - Chao Ding
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Hanwei Gan
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Shuting Jiang
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Gongliang Zhang
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| | - Jingran Bi
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| | - Shuang Yan
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Hongman Hou
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| |
Collapse
|
29
|
Wei D, Wang Y, Zhu N, Xiao J, Li X, Xu T, Hu X, Zhang Z, Yin D. A Lab-in-a-Syringe Device Integrated with a Smartphone Platform: Colorimetric and Fluorescent Dual-Mode Signals for On-Site Detection of Organophosphorus Pesticides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48643-48652. [PMID: 34623807 DOI: 10.1021/acsami.1c13273] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, a portable lab-in-a-syringe device integrated with a smartphone sensing platform was designed for rapid, visual quantitative determination of organophosphorus pesticides (OPs) via colorimetric and fluorescent signals. The device was chiefly made up of a conjugate pad labeled with cetyltrimethylammonium bromide-coated gold nanoparticles (CTAB-Au NPs) and a sensing pad modified by ratiometric probes (red-emission quantum dots@SiO2 nanoparticles@green-emission quantum dots, rQDs@SiO2@gQDs probe), which was assembled through a disposable syringe and reusable plastic filter. In the detection system, thiocholine (Tch), the hydrolysis product of thioacetylcholine (ATch) by acetylcholinesterase (AchE), could trigger the aggregation of CTAB-Au NPs, resulting in a significant color change from red to purple. Then, CTAB-Au NPs flowed vertically upward and bound to the rQDs@SiO2@gQDs probe on the sensing pad, reducing the fluorescence resonance energy transfer effect between CTAB-Au NPs and gQDs. Meanwhile, rQDs embedded in SiO2 NPs remained stable as internal reference fluorescence, achieving a color transition from red to green. Thus, based on the inhibition of AChE activity by OPs, a colorimetric and fluorescent dual-mode platform was constructed for on-site detection of OPs. Using glyphosate as a model, with the support of a color recognizer application (APP) on a smartphone, the ratio of red and green channel values could be utilized for accurate OP quantitative analysis ranging from 0 to 10 μM with a detection limit of 2.81 nM (recoveries, 90.8-122.4%; CV, 1.2-3.4%). Overall, the portable lab-in-a-syringe device based on a smartphone sensing platform integrated sample monitoring and result analysis in the field, implying great potential for on-site detection of OPs.
Collapse
Affiliation(s)
- Dali Wei
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ying Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiaxuan Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuesong Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ting Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xialin Hu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
30
|
Pang Y, Wu D, Ma Y, Cao Y, Liu Q, Tang M, Pu Y, Zhang T. Reactive oxygen species trigger NF-κB-mediated NLRP3 inflammasome activation involvement in low-dose CdTe QDs exposure-induced hepatotoxicity. Redox Biol 2021; 47:102157. [PMID: 34614473 PMCID: PMC8489155 DOI: 10.1016/j.redox.2021.102157] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cadmium telluride (CdTe) quantum dots (QDs) can be employed as imaging and drug delivery tools; however, the toxic effects and mechanisms of low-dose exposure are unclear. Therefore, this pioneering study focused on hepatic macrophages (Kupffer cells, KCs) and explored the potential damage process induced by exposure to low-dose CdTe QDs. In vivo results showed that both 2.5 μM/kg·bw and 10 μM/kg·bw could both activate KCs to cause liver injury, and produce inflammation by disturbing antioxidant levels. Abnormal liver function further verified the risks of low-dose exposure to CdTe QDs. The KC model demonstrated that low-dose CdTe QDs (0 nM, 5 nM and 50 nM) can be absorbed by cells and cause severe reactive oxygen species (ROS) production, oxidative stress, and inflammation. Additionally, the expression of NF-κB, caspase-1, and NLRP3 were decreased after pretreatment with ROS scavenging agent N-acetylcysteine (NAC, 5 mM pretreated for 2 h) and the NF-κB nuclear translocation inhibitor Dehydroxymethylepoxyquinomicin (DHMEQ, 10 μg/mL pretreatment for 4 h) respectively. The results indicate that the activation of the NF-κB pathway by ROS not only directly promotes the expression of inflammatory factors such as pro-IL-1β, TNF-α, and IL-6, but also mediates the assembly of NLRP3 by ROS activation of NF-κB pathway, which indirectly promotes the expression of NLRP3. Finally, a high-degree of overlap between the expression of the NF-κB and NLRP3 and the activated regions of KCs, further support the importance of KCs in inflammation induced by low-dose CdTe QDs.
Collapse
Affiliation(s)
- Yanting Pang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Daming Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuna Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qing Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
31
|
Khorablou Z, Shahdost-Fard F, Razmi H, Yola ML, Karimi-Maleh H. Recent advances in developing optical and electrochemical sensors for analysis of methamphetamine: A review. CHEMOSPHERE 2021; 278:130393. [PMID: 33823350 DOI: 10.1016/j.chemosphere.2021.130393] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Recognition of misused stimulant drugs has always been a hot topic from a medical and judicial perspective. Methamphetamine (MAMP) is an addictive and illegal drug that profoundly affects the central nervous system. Like other illicit drugs, the detection of MAMP in biological and street samples is vital for several organizations such as forensic medicine, anti-drug headquarters and diagnostic clinics. By emerging nanotechnology and exploiting nanomaterials in sensing applications, a great deal of attention has been given to the design of analytical sensors in MAMP tracing. For the first time, this study has briefly reviewed all the optical and electrochemical sensors in MAMP detection from earlier so far. How various receptors with engineering nanomaterials allow developing novel approaches to measure MAMP have been studied. Fundamental concepts related to optical and electrochemical recognition assays in which nanomaterials have been used and relevant MAMP sensing applications have been comprehensively covered. Challenges, opportunities and future outlooks of this field have also been discussed at the end.
Collapse
Affiliation(s)
- Zeynab Khorablou
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, PO BOX 53714-161, Tabriz, Iran
| | | | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, PO BOX 53714-161, Tabriz, Iran.
| | - Mehmet Lütfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey
| | - Hassan Karimi-Maleh
- School of Resources and Enviroment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, P.O. Box 17011, South Africa.
| |
Collapse
|
32
|
Shahdost-Fard F, Bigdeli A, Hormozi-Nezhad MR. A Smartphone-Based Fluorescent Electronic Tongue for Tracing Dopaminergic Agents in Human Urine. ACS Chem Neurosci 2021; 12:3157-3166. [PMID: 34382769 DOI: 10.1021/acschemneuro.1c00160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The importance of tracing dopaminergic agents in the progression assessment of Parkinson's disease has boosted the demand for fast, sensitive, and real-time multi-analyte detection. Herein, visual and fingerprint fluorimetric patterns have been created by an optical sensor array to simultaneously detect and discriminate among levodopa, carbidopa, benserazide, and entacapone, as important dopaminergic agents. A dual emissive nanoprobe consisting of red quantum dots and blue carbon dots with an overall pink emission has been fabricated to provide unique emission patterns in the presence of the target analytes. The sensor elements in the array come from it's differential response in the absence and presence of cetyltrimethylammonium bromide under alkaline conditions. A smartphone camera was used to take photos from the solutions in the wells. Distinct changes in the spectral profiles along with vivid and concentration-dependent color variations led to visual discrimination of dopaminergic agents in a broad concentration range. The results of linear discriminant analysis revealed great discrimination accuracies. Different concentrations of the target analytes were excellently recognized in human urine. The high sensitivity of the array, which is a bonus to rapid, on-site, and visual discrimination of dopaminergic agents, holds great promise for routine analysis of real-world clinical samples.
Collapse
Affiliation(s)
- Faezeh Shahdost-Fard
- Department of Chemistry, Sharif University of Technology, 11155-9516, Tehran, Iran
- Department of Chemistry, Faculty of Sciences, Ilam University, 69315-516, Ilam, Iran
| | - Arafeh Bigdeli
- Department of Chemistry, Sharif University of Technology, 11155-9516, Tehran, Iran
| | - Mohammad Reza Hormozi-Nezhad
- Department of Chemistry, Sharif University of Technology, 11155-9516, Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588-89694, Tehran, Iran
| |
Collapse
|
33
|
A highly sensitive and dual-readout immunoassay for norfloxacin in milk based on QDs-FM@ALP-SA and click chemistry. Talanta 2021; 234:122703. [PMID: 34364497 DOI: 10.1016/j.talanta.2021.122703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
A dual-readout immunoassay based on QDs-FM@ALP-SA and click chemistry was developed for quick and sensitive detection of norfloxacin (NOR), which is an important fluoroquinolone antibiotic. In the system, the NOR-biotin conjugate (NOR-Biotin) was synthesized by click chemistry for signal transformation, and alkaline phosphatase-labeled streptavidin (ALP-SA) was attached to quantum dot fluorescence microspheres (QDs-FM) by an activated ester method to form QDs-FM@ALP-SA for signal amplification. Here, QDs-FM was a dual-functional carrier: it was used not only as a chemiluminescence signal amplification carrier but also as a fluorescent signal due to its fluorescence character. The NOR antibody was coated on a 96-well chemiluminescence microtiter plate, and NOR-Biotin was bound to the antibody specifically. Then, QDs-FM@ALP-SA was combined with NOR-Biotin to develop a direct competition chemiluminescence/fluorescence immunoassay (dc-CLIA/FIA). The IC50 values were 0.345 and 1.206 ng/mL for dc-CLIA/FIA, respectively. The linear range was 0.013-12.48 ng/mL and 0.042-39.86 ng/mL, respectively. The recovery from the standard fortified blank milk samples was in the range of 86.44%-101.3%. Therefore, this method could be a useful tool for routine screening of NOR residues in milk.
Collapse
|
34
|
Abdul Hakeem D, Su S, Mo Z, Wen H. Upconversion luminescent nanomaterials: A promising new platform for food safety analysis. Crit Rev Food Sci Nutr 2021; 62:8866-8907. [PMID: 34159870 DOI: 10.1080/10408398.2021.1937039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Foodborne diseases have become a significant threat to public health worldwide. Development of analytical techniques that enable fast and accurate detection of foodborne pathogens is significant for food science and safety research. Assays based on lanthanide (Ln) ion-doped upconversion nanoparticles (UCNPs) show up as a cutting edge platform in biomedical fields because of the superior physicochemical features of UCNPs, including negligible autofluorescence, large signal-to-noise ratio, minimum photodamage to biological samples, high penetration depth, and attractive optical and chemical features. In recent decades, this novel and promising technology has been gradually introduced to food safety research. Herein, we have reviewed the recent progress of Ln3+-doped UCNPs in food safety research with emphasis on the following aspects: 1) the upconversion mechanism and detection principles; 2) the history of UCNPs development in analytical chemistry; 3) the in-depth state-of-the-art synthesis strategies, including synthesis protocols for UCNPs, luminescence, structure, morphology, and surface engineering; 4) applications of UCNPs in foodborne pathogens detection, including mycotoxins, heavy metal ions, pesticide residue, antibiotics, estrogen residue, and pathogenic bacteria; and 5) the challenging and future perspectives of using UCNPs in food safety research. Considering the diversity and complexity of the foodborne harmful substances, developing novel detections and quantification techniques and the rigorous investigations about the effect of the harmful substances on human health should be accelerated.
Collapse
Affiliation(s)
- Deshmukh Abdul Hakeem
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Shaoshan Su
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhurong Mo
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Hongli Wen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
35
|
Fauzi NIM, Fen YW, Omar NAS, Hashim HS. Recent Advances on Detection of Insecticides Using Optical Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:3856. [PMID: 34204853 PMCID: PMC8199770 DOI: 10.3390/s21113856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
Insecticides are enormously important to industry requirements and market demands in agriculture. Despite their usefulness, these insecticides can pose a dangerous risk to the safety of food, environment and all living things through various mechanisms of action. Concern about the environmental impact of repeated use of insecticides has prompted many researchers to develop rapid, economical, uncomplicated and user-friendly analytical method for the detection of insecticides. In this regards, optical sensors are considered as favorable methods for insecticides analysis because of their special features including rapid detection time, low cost, easy to use and high selectivity and sensitivity. In this review, current progresses of incorporation between recognition elements and optical sensors for insecticide detection are discussed and evaluated well, by categorizing it based on insecticide chemical classes, including the range of detection and limit of detection. Additionally, this review aims to provide powerful insights to researchers for the future development of optical sensors in the detection of insecticides.
Collapse
Affiliation(s)
- Nurul Illya Muhamad Fauzi
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
| | - Yap Wing Fen
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hazwani Suhaila Hashim
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
36
|
Chu H, Yao D, Chen J, Yu M, Su L. Detection of Hg 2+ by a Dual-Fluorescence Ratio Probe Constructed with Rare-Earth-Element-Doped Cadmium Telluride Quantum Dots and Fluorescent Carbon Dots. ACS OMEGA 2021; 6:10735-10744. [PMID: 34056227 PMCID: PMC8153792 DOI: 10.1021/acsomega.1c00263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/02/2021] [Indexed: 05/06/2023]
Abstract
Quantum dots (QDs) and carbon quantum dots (CDs) are classes of zero-dimensional materials whose sizes can be ≤10 nm. They exhibit excellent optical properties and are widely used to prepare fluorescent probes for qualitative and quantitative detection of test objects. In this article, we used cerium chloride as the cerium source and used the in situ doped cerium (rare-earth element) to develop cadmium telluride (CdTe) quantum dots following the aqueous phase method. CdTe: Ce quantum dots were successfully synthesized. The solution of CdTe:Ce QDs was mixed with the CD solution prepared following the green microwave method to form a ratio fluorescence sensor that can be potentially used for the selective detection of mercury ions (Hg2+). We used transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and other microscopy and spectral characterization techniques to validate that Ce had been successfully doped. The test results on the fluorescence performance revealed that Ce doping enhances the predoped fluorescence performance of the CdTe QDs. We have quantitatively detected Hg2+ using a ratiometric fluorescence sensor to show that in the range of 10-60 nM, the fluorescence quenching efficiency increases linearly with the increase in Hg2+ concentration. The linear correlation coefficient R 2 = 0.9978, and its detection limit was found to be 2.63 nM L-1. It was observed that other interfering ions do not significantly affect the fluorescence intensity of the probe. According to the results of the blank addition experiment, the developed proportional fluorescence probe can be used for the detection of Hg2+ in actual samples.
Collapse
|
37
|
Zhao G, Zhou B, Wang X, Shen J, Zhao B. Detection of organophosphorus pesticides by nanogold/mercaptomethamidophos multi-residue electrochemical biosensor. Food Chem 2021; 354:129511. [PMID: 33735695 DOI: 10.1016/j.foodchem.2021.129511] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/31/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Based on the successful synthesis of mercaptomethamidophos as a substrate, a novel nanogold/mercaptomethamidophos multi-residue electrochemical biosensor was designed and fabricated by combining nanoscale effect, strong Au-S bonds as well as interaction between acetylcholinesterase (AChE) and mercaptomethamidophos, which can simultaneously detect 11 kinds of organophosphorus pesticides (OPPs) and total amount of OPPs using indirect competitive method. Electrochemical behavior of the modified electrode was characterized by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The AChE concentration and incubation time were optimized at 37.4 °C to achieve the best detection effect. This biosensor exhibits excellent electrochemical properties with a wider linear range of 0.1 ~ 1500 ng·mL-1, lower detection limit of 0.019 ~ 0.077 ng·mL-1, better stability and repeatability, which realizes the rapid detection of total amount of OPPs, and can simultaneously detect a large class of OPPs rather than one kind of OPP. Two OPPs (trichlorfon, dichlorvos) were detected in actual samples of apple and cabbage and achieved satisfactory test results.
Collapse
Affiliation(s)
- Guozheng Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemistry and Material Science, College of Food Science, Shanxi Normal University, Linfen 041004, China.
| | - Binhua Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiuwen Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|