1
|
Tian L, Li Y, Wang H, Li X, Gao Q, Liu Y, Liu Y, Wang Q, Ma C, Shi C. A pH ultra-sensitive hydrated iridium oxyhydroxide films electrochemical sensor for label-free detection of Vibrio parahaemolyticus. Anal Biochem 2024; 693:115597. [PMID: 38969155 DOI: 10.1016/j.ab.2024.115597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a major foodborne pathogen, which can cause serious foodborne illnesses like diarrhoea. Rapid on-site detection of foodborne pathogens is an ideal way to respond to foodborne illnesses. Herein, we provide an electrochemical sensor for rapid on-site detection. This sensor utilized a pH-sensitive metal-oxide material for the concurrent isothermal amplification and label-free detection of nucleic acids. Based on a pH-sensitive hydrated iridium oxide oxyhydroxide film (HIROF), the electrode transforms the hydrogen ion compound generated during nucleic acid amplification into potential, so as to achieve a real-time detection. The results can be transmitted to a smartphone via Bluetooth. Moreover, HIROF was applied in nucleic acid device detection, with a super-Nernst sensitivity of 77.6 mV/pH in the pH range of 6.0-8.5, and the sensitivity showed the best results so far. Detection of V. parahaemolyticus by this novel method showed a detection limit of 1.0 × 103 CFU/mL, while the time consumption was only 30 min, outperforming real-time fluorescence loop-mediated isothermal amplification (LAMP). Therefore, the characteristics of compact, portable, and fast make the sensor more widely used in on-site detection.
Collapse
Affiliation(s)
- Lin Tian
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine Qingdao University, Qingdao, PR China
| | - Yang Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine Qingdao University, Qingdao, PR China
| | - Huiqing Wang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine Qingdao University, Qingdao, PR China
| | - Xinyi Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine Qingdao University, Qingdao, PR China
| | - Qian Gao
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine Qingdao University, Qingdao, PR China
| | - Yaru Liu
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine Qingdao University, Qingdao, PR China
| | - Yao Liu
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine Qingdao University, Qingdao, PR China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, PR China.
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, PR China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine Qingdao University, Qingdao, PR China; Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, PR China.
| |
Collapse
|
2
|
Mao Z, Zhao Y, Jia J, Xu Y, Li L, Zhou Y. Ultrasensitive Electrochemiluminescence Biosensor to Detect Ampicillin Resistance Gene (ARG AMP) Based on a Novel Near-Infrared Ruthenium Carbene Complex/TPrA/PEI Ternary ECL System. Anal Chem 2024; 96:934-942. [PMID: 38165813 DOI: 10.1021/acs.analchem.3c05367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The establishment of rapid target identification and analysis methods for antibiotic resistance genes (ARGs) is urgently needed. In this study, we unprecedently designed a target-catalyzed hairpin assembly (CHA) electrochemiluminescent (ECL) biosensor for the ultrasensitive detection of ampicillin resistance genes (ARGAMP) based on a novel, efficient near-infrared ruthenium carbene complex/TPrA/PEI ternary ECL system with low oxidation potential. The ternary NIR-ECL system illustrated in this work displayed double ECL intensity in comparison with their corresponding traditional binary ECL system. The as-prepared ECL biosensor illustrated in this work demonstrates highly selective and sensitive determination of ARGAMP from 1 fM to 1 nM and a low detection limit of 0.23 fM. Importantly, it also exhibits good accuracy and stabilities to identify ARGAMP in plasmid and bacterial genome DNA, which demonstrates its excellent reliability and great potential in detecting ARGAMP in real environmental samples.
Collapse
Affiliation(s)
- Ziwang Mao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yibo Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yaoyao Xu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
3
|
Luo P, Huang X, Luo F, Chen Z, Chen Y, Lin C, Wang J, Qiu B, Lin Z. Low-Background Signal-On Homogeneous Electrochemiluminescence Biosensor for Hepatitis B Virus Detection Based on the Regulation of the Length of DNA Modified on the Nanoparticles by CRISPR/Cas12a and Hybridization Chain Reaction. Anal Chem 2023; 95:14127-14134. [PMID: 37676272 DOI: 10.1021/acs.analchem.3c03141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
In this work, combined with the high amplification efficiency of hybridization chain reaction (HCR), high specificity of the CRISPR/Cas12a system, and convenience of the homogeneous electrochemiluminescence (ECL) assay based on the regulation of negative charge on the reporting probes, a sensitive ECL biosensor for hepatitis B virus DNA (chosen as a model target) had been developed. The initiator chain trigger DNA that can induce HCR amplification is modified on the surface of ruthenium bipyridine-doped silica nanoparticles (Ru@SiO2 NPs) first, and large amounts of negative charges modified on the particles were achieved through the HCR amplification reaction. The efficiency of the nanoparticles reaching the negatively charged working electrode can be regulated and realize the change of the ECL signal. In addition, long DNA on the surface of the luminescent body may prevent the coreactant from entering the pore to react with ruthenium bipyridine. These factors combine to produce a low-background system. The presence of the target can activate the CRISPR/Cas12a system and make trigger DNA disappear from the nanoparticle surface, and strong ECL can be detected. The sensor does not require a complex electrode modification; therefore, it has better reproducibility. Additionally, due to dual signal amplification, the sensor has a high sensitivity. In the range of 10 fM to 10 nM, the ECL intensity exhibits a strong linear relationship with the logarithm of the target concentration, and the detection limit is 7.41 fM. This sensor has shown high accuracy in detecting clinical samples, which holds significant potential for application in clinical testing.
Collapse
Affiliation(s)
- Peiqing Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Xiaocui Huang
- Department of Science Research and Training, Fujian Institute of Education, Fuzhou, Fujian 350001, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Zhonghui Chen
- Affiliated Hospital of Putian University, Putian University, Putian, Fujian 351100, China
| | - Yu Chen
- Central Laboratory, Affiliated Hospital of Putian University, Putian University, Putian 351100, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| |
Collapse
|
4
|
Chen C, Qi M, Fu C, He R, Chen L, Hu J. Ps -Pt nanozyme-based synergistic signal amplification biosensor for highly sensitive colorimetric detection of protein. Talanta 2023; 263:124700. [PMID: 37247452 DOI: 10.1016/j.talanta.2023.124700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/04/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Immunosorbent assay is one of the most popular immunological screening techniques which has been widely used for the clinical diagnosis of alpha-fetoprotein (AFP). While traditional immunosorbent assay (ELISA) suffers from low detection sensitivity due to its low intensity of colorimetric signal. To improve the sensitivity of AFP detection, we developed a new and sensitive immunocolorimetric biosensor by combining Ps-Pt nanozyme with terminal deoxynucleotidyl transferase (TdT)-mediated polymerization reaction. The determination of AFP was achieved by measuring the visual color intensity produced by the catalytic oxidation reaction of the 3,3',5,5'-tetramethylbenzidine (TMB) solution with Ps-Pt and horseradish peroxidase (HRP). Owing to the synergistic catalysis of Ps-Pt and horseradish peroxidase HRP enriched in polymerized amplification products, this biosensor exhibited a significant color change within 25 s in the presence of 10-500 pg/mL AFP. This proposed method allowed for the specific detection of AFP with a detection limit of 4.30 pg/mL and even 10 pg/mL target protein could be distinguished clearly by visual observation. Furthermore, this biosensor could be applied to analysis of AFP in the complex sample and could be easily extended to the detection of other proteins.
Collapse
Affiliation(s)
- Chaohui Chen
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, PR China; Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, Hubei, China.
| | - Mengting Qi
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, Hubei, China
| | - Cheng Fu
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, PR China; Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, Hubei, China
| | - Rongxiang He
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, PR China; Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, Hubei, China
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Jiao Hu
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, PR China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, Hubei, China.
| |
Collapse
|
5
|
Zhai LY, Su AM, Liu JF, Zhao JJ, Xi XG, Hou XM. Recent advances in applying G-quadruplex for SARS-CoV-2 targeting and diagnosis: A review. Int J Biol Macromol 2022; 221:1476-1490. [PMID: 36130641 PMCID: PMC9482720 DOI: 10.1016/j.ijbiomac.2022.09.152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022]
Abstract
The coronavirus SARS-CoV-2 has caused a health care crisis all over the world since the end of 2019. Although vaccines and neutralizing antibodies have been developed, rapidly emerging variants usually display stronger immune escape ability and can better surpass vaccine protection. Therefore, it is still vital to find proper treatment strategies. To date, antiviral drugs against SARS-CoV-2 have mainly focused on proteases or polymerases. Notably, noncanonical nucleic acid structures called G-quadruplexes (G4s) have been identified in many viruses in recent years, and numerous G4 ligands have been developed. During this pandemic, literature on SARS-CoV-2 G4s is rapidly accumulating. Here, we first summarize the recent progress in the identification of SARS-CoV-2 G4s and their intervention by ligands. We then introduce the potential interacting proteins of SARS-CoV-2 G4s from both the virus and the host that may regulate G4 functions. The innovative strategy to use G4s as a diagnostic tool in SARS-CoV-2 detection is also reviewed. Finally, we discuss some key questions to be addressed in the future.
Collapse
Affiliation(s)
- Li-Yan Zhai
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ai-Min Su
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jing-Fan Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jian-Jin Zhao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; ENS Paris-Saclay, Université Paris-Saclay, CNRS UMR8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), 91190 Gif-sur-Yvette, France
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
6
|
Simultaneous detection of four specific DNAs fragments based on two-dimensional bimetallic MOF nanosheets. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Liu Q, Xie H, Liu J, Kong J, Zhang X. A novel electrochemical biosensor for lung cancer-related gene detection based on copper ferrite-enhanced photoinitiated chain-growth amplification. Anal Chim Acta 2021; 1179:338843. [PMID: 34535265 DOI: 10.1016/j.aca.2021.338843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 10/20/2022]
Abstract
We reported an electrochemical biosensor via CuFe2O4-enhanced photoinitiated chain-growth polymerization for ultrasensitive detection of lung cancer-related gene. In this work, photoinitiated atom transfer radical polymerization (ATRP) was applied to amplify the electrochemical signal corresponding to lung cancer-related gene, and polymerization was triggered off under the illumination of blue light which was involved in copper-mediated reductive quenching cycle. At the same time, CuFe2O4-H2O2 system was also activated to enhance polymerization based on the photocatalysis of CuFe2O4, which was based on the reaction between •OH and methacrylic monomers to generate carbon-based radicals. Numerous ferrocene-based polymer was graft onto electrode surface through this amplification stages. The limit of detection was low to 1.98 aM (in 10 μL, ∼11.9 molecules) (R2 = 0.998) with a wide linear range from 0.1 fM to 10 pM. This strategy made a good trade-off between cost-effectiveness and sensitivity, and it also presented a high selectivity and anti-interference. In addition, the operation was greatly simplified and detection time was also shortened, which endowed this electrochemical DNA biosensor great application potential.
Collapse
Affiliation(s)
- Qianrui Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Huifang Xie
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Jingliang Liu
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing, Jiangsu, 211171, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
9
|
Tao Y, Lao YH, Yi K, Xu Y, Wang H, Shao D, Wang J, Li M. Noble metal-molybdenum disulfide nanohybrids as dual fluorometric and colorimetric sensor for hepatitis B virus DNA detection. Talanta 2021; 234:122675. [PMID: 34364475 DOI: 10.1016/j.talanta.2021.122675] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) infection is one of the global healthcare burdens, and its early diagnosis is crucial for the prevention of HBV-induced chronic hepatitis, liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although different detection approaches have been reported, most of these methods either rely on sophisticated machines or procedures, which limit their use particularly in the high endemic, developing countries. In this work, we report a dual-sensing nanoplatform built on noble metal-molybdenum disulfide (MoS2) nanohybrids, and this platform can detect the HBV DNA target through either fluorometric or colorimetric readouts. The design with the silver nanocluster (AgNC)-MoS2 nanohybrid enables multiplex fluorescent detection, while the HBV DNA-regulated growth of platinum nanoparticles (PtNPs) on the MoS2 nanosheets offers signal-on colorimetric detection. Both AgNC-MoS2 and PtNP-MoS2 nanohybrids show high sensitivity with pico-molar detection limit and single nucleotide specificity, even with the spiked human serum. Collectively, the proposed nanohybrids possess their potential in the use of early HBV diagnosis, particularly suitable for the high endemic areas with limited medical and instrumental supports.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jiasi Wang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China.
| |
Collapse
|
10
|
Shi H, Wang Y, Lin S, Lou J, Zhang Q. Recent development and application of cyclometalated iridium(III) complexes as chemical and biological probes. Dalton Trans 2021; 50:6410-6417. [PMID: 33900334 DOI: 10.1039/d1dt00592h] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iridium complexes have been widely applied as molecular sensors because of their rich photophysical properties, including large Stokes shifts, long emission lifetimes, environment-sensitive emissions, and high luminescence quantum yields. In this paper, we review the recent development and application of iridium complexes as probes for ions, anions, gaseous species, organic molecules, small biomolecules, biomacromolecules, and subcellular organelles. Our outlook for iridium-based probes is also discussed.
Collapse
Affiliation(s)
- Hongdong Shi
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Yi Wang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Simin Lin
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Jingxue Lou
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Qianling Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| |
Collapse
|
11
|
Zhang H, Cheng C, Dong N, Ji X, Hu J. Positively charged Ag@Au core-shell nanoparticles as highly stable and enhanced fluorescence quenching platform for one-step nuclease activity detection. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|