1
|
Miller HA, Suliman S, Frieboes HB. Pulmonary Fibrosis Diagnosis and Disease Progression Detected Via Hair Metabolome Analysis. Lung 2024; 202:581-593. [PMID: 38861171 DOI: 10.1007/s00408-024-00712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Fibrotic interstitial lung disease is often identified late due to non-specific symptoms, inadequate access to specialist care, and clinical unawareness precluding proper and timely treatment. Biopsy histological analysis is definitive but rarely performed due to its invasiveness. Diagnosis typically relies on high-resolution computed tomography, while disease progression is evaluated via frequent pulmonary function testing. This study tested the hypothesis that pulmonary fibrosis diagnosis and progression could be non-invasively and accurately evaluated from the hair metabolome, with the longer-term goal to minimize patient discomfort. METHODS Hair specimens collected from pulmonary fibrosis patients (n = 56) and healthy subjects (n = 14) were processed for metabolite extraction using 2DLC/MS-MS, and data were analyzed via machine learning. Metabolomic data were used to train machine learning classification models tuned via a rigorous combination of cross validation, feature selection, and testing with a hold-out dataset to evaluate classifications of diseased vs. healthy subjects and stable vs. progressed disease. RESULTS Prediction of pulmonary fibrosis vs. healthy achieved AUROCTRAIN = 0.888 (0.794-0.982) and AUROCTEST = 0.908, while prediction of stable vs. progressed disease achieved AUROCTRAIN = 0.833 (0.784 - 0.882) and AUROCTEST = 0. 799. Top metabolites for diagnosis included ornithine, 4-(methylnitrosamino)-1-3-pyridyl-N-oxide-1-butanol, Thr-Phe, desthiobiotin, and proline. Top metabolites for progression included azelaic acid, Thr-Phe, Ala-Tyr, indoleacetyl glutamic acid, and cytidine. CONCLUSION This study provides novel evidence that pulmonary fibrosis diagnosis and progression may in principle be evaluated from the hair metabolome. Longer term, this approach may facilitate non-invasive and accurate detection and monitoring of fibrotic lung diseases.
Collapse
Affiliation(s)
- Hunter A Miller
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40292, USA
| | - Sally Suliman
- Division of Pulmonary Medicine, University of Louisville, Louisville, KY, USA
- University of Arizona Medical Center Phoenix, Phoenix, AZ, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40292, USA.
- UofL Health - Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
2
|
Chang CW, Hsu JY, Hsiao PZ, Sung PS, Liao PC. Optimized analytical strategy based on high-resolution mass spectrometry for unveiling associations between long-term chemical exposome in hair and Alzheimer's disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116955. [PMID: 39213755 DOI: 10.1016/j.ecoenv.2024.116955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Exposure to environmental pollutants or contaminants is correlated with detrimental effects on human health, such as neurodegenerative diseases. Adopting hair as a biological matrix for biomonitoring is a significant innovation, since it can reflect the long-term chemical exposome, spanning months to years. However, only a limited number of studies have developed analytical strategies for profiling the chemical exposome in this heterogeneous biological matrix. In this study, a systematic investigation of the chemical extraction procedure from human hair was conducted, using a design of experiments and a high-resolution mass spectrometry (HRMS)-based suspect screening approach. The PlackettBurman (PB) design was applied to identify the significant variables influencing the number of detected features. Then, a central composite design was implemented to optimize the levels of each identified significant variable. Under the optimal conditions-15-minute pulverization, 25 mg of hair weight, 40 min of sonication, and a sonication temperature of 35 °C-approximately 32,000 and 15,000 aligned features were detected in positive and negative ion modes, respectively. This optimized analytical procedure was applied to hair samples from patients with Alzheimer's disease (AD) and individuals with normal cognitive function. Overall, 307 chemicals were identified using the suspect screening approach, with 37 chemicals differentiating patients with AD from controls. This study not only optimized an analytical procedure for characterizing the long-term chemical exposome in human hair but also explored the associations between AD and environmental factors.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Yi Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ping-Zu Hsiao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pi-Shan Sung
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| |
Collapse
|
3
|
Hung SH, Kan HL, Tung CW, Lin YC, Chen TT, Tian C, Chang WCW. Probing the hair detectability of prohibited substances in sports: an in vivo-in silico-clinical approach and analytical implications compared with plasma, urine, and faeces. Arch Toxicol 2024; 98:779-790. [PMID: 38224356 PMCID: PMC10861659 DOI: 10.1007/s00204-023-03667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Hair analysis is a crucial method in forensic toxicology with potential applications in revealing doping histories in sports. Despite its widespread use, knowledge about detectable substances in hair is limited. This study systematically assessed the detectability of prohibited substances in sports using a multifaceted approach. Initially, an animal model received a subset of 17 model drugs to compare dose dependencies and detection windows across different matrices. Subsequently, hair incorporation data from the animal experiment were extrapolated to all substances on the World Anti-Doping Agency's List through in-silico prediction. The detectability of substances in hair was further validated in a proof-of-concept human study involving the consumption of diuretics and masking agents. Semi-quantitative analysis of substances in specimens was performed using ultra-performance liquid chromatography-tandem mass spectrometry. Results showed plasma had optimal dose dependencies with limited detection windows, while urine, faeces, and hair exhibited a reasonable relationship with the administered dose. Notably, hair displayed the highest detection probability (14 out of 17) for compounds, including anabolic agents, hormones, and diuretics, with beta-2 agonists undetected. Diuretics such as furosemide, canrenone, and hydrochlorothiazide showed the highest hair incorporation. Authentic human hair confirmed diuretic detectability, and their use duration was determined via segmental analysis. Noteworthy is the first-time reporting of canrenone in human hair. Anabolic agents were expected in hair, whereas undetectable compounds, such as peptide hormones and beta-2 agonists, were likely due to large molecular mass or high polarity. This study enhances understanding of hair analysis in doping investigations, providing insights into substance detectability.
Collapse
Affiliation(s)
- Shao-Hsin Hung
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hung-Lin Kan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 350, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 350, Taiwan
| | - Yi-Ching Lin
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ting-Ting Chen
- Department of Leisure Industry and Health Promotion, College of Humanities and Management, National Ilan University, Yilan County, 260, Taiwan
| | - Ciao Tian
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - William Chih-Wei Chang
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
4
|
Chang CW, Hsu JY, Lo YT, Liu YH, Mee-inta O, Lee HT, Kuo YM, Liao PC. Characterization of Hair Metabolome in 5xFAD Mice and Patients with Alzheimer's Disease Using Mass Spectrometry-Based Metabolomics. ACS Chem Neurosci 2024; 15:527-538. [PMID: 38269400 PMCID: PMC10853927 DOI: 10.1021/acschemneuro.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Hair emerged as a biospecimen for long-term investigation of endogenous metabolic perturbations, reflecting the chemical composition circulating in the blood over the past months. Despite its potential, the use of human hair for metabolomics in Alzheimer's disease (AD) research remains limited. Here, we performed both untargeted and targeted metabolomic approaches to profile the key metabolic pathways in the hair of 5xFAD mice, a widely used AD mouse model. Furthermore, we applied the discovered metabolites to human subjects. Hair samples were collected from 6-month-old 5xFAD mice, a stage marked by widespread accumulation of amyloid plaques in the brain, followed by sample preparation and high-resolution mass spectrometry analysis. Forty-five discriminatory metabolites were discovered in the hair of 6-month-old 5xFAD mice compared to wild-type control mice. Enrichment analysis revealed three key metabolic pathways: arachidonic acid metabolism, sphingolipid metabolism, and alanine, aspartate, and glutamate metabolism. Among these pathways, six metabolites demonstrated significant differences in the hair of 2-month-old 5xFAD mice, a stage prior to the onset of amyloid plaque deposition. These findings suggest their potential involvement in the early stages of AD pathogenesis. When evaluating 45 discriminatory metabolites for distinguishing patients with AD from nondemented controls, a combination of l-valine and arachidonic acid significantly differentiated these two groups, achieving a 0.88 area under the curve. Taken together, these findings highlight the potential of hair metabolomics in identifying disease-specific metabolic alterations and developing biomarkers for improving disease detection and monitoring.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Yi Hsu
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yu-Tai Lo
- Department
of Geriatrics and Gerontology, National Cheng Kung University Hospital,
College of Medicine, National Cheng Kung
University, Tainan 704, Taiwan
- Department
of Public Health, College of Medicine, National
Cheng Kung University, Tainan 704, Taiwan
| | - Yu-Hsuan Liu
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Onanong Mee-inta
- Institute
of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsueh-Te Lee
- Institute
of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Min Kuo
- Institute
of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department
of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pao-Chi Liao
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
5
|
de Souza HMR, Pereira TTP, de Sá HC, Alves MA, Garrett R, Canuto GAB. Critical Factors in Sample Collection and Preparation for Clinical Metabolomics of Underexplored Biological Specimens. Metabolites 2024; 14:36. [PMID: 38248839 PMCID: PMC10819689 DOI: 10.3390/metabo14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
This review article compiles critical pre-analytical factors for sample collection and extraction of eight uncommon or underexplored biological specimens (human breast milk, ocular fluids, sebum, seminal plasma, sweat, hair, saliva, and cerebrospinal fluid) under the perspective of clinical metabolomics. These samples are interesting for metabolomics studies as they reflect the status of living organisms and can be applied for diagnostic purposes and biomarker discovery. Pre-collection and collection procedures are critical, requiring protocols to be standardized to avoid contamination and bias. Such procedures must consider cleaning the collection area, sample stimulation, diet, and food and drug intake, among other factors that impact the lack of homogeneity of the sample group. Precipitation of proteins and removal of salts and cell debris are the most used sample preparation procedures. This review intends to provide a global view of the practical aspects that most impact results, serving as a starting point for the designing of metabolomic experiments.
Collapse
Affiliation(s)
- Hygor M. R. de Souza
- Instituto de Química, Universidade Federal do Rio de Janeiro, LabMeta—LADETEC, Rio de Janeiro 21941-598, Brazil;
| | - Tássia T. P. Pereira
- Departamento de Genética, Ecologia e Evolucao, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Hanna C. de Sá
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador 40170-115, Brazil;
| | - Marina A. Alves
- Instituto de Pesquisa de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil;
| | - Rafael Garrett
- Instituto de Química, Universidade Federal do Rio de Janeiro, LabMeta—LADETEC, Rio de Janeiro 21941-598, Brazil;
- Department of Laboratory Medicine, Boston Children’s Hospital—Harvard Medical School, Boston, MA 02115, USA
| | - Gisele A. B. Canuto
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador 40170-115, Brazil;
| |
Collapse
|
6
|
Chen YC, Hsu JF, Chang CW, Li SW, Yang YC, Chao MR, Chen HJC, Liao PC. Connecting chemical exposome to human health using high-resolution mass spectrometry-based biomonitoring: Recent advances and future perspectives. MASS SPECTROMETRY REVIEWS 2023; 42:2466-2486. [PMID: 36062854 DOI: 10.1002/mas.21805] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 06/15/2023]
Abstract
Compared with the rapid advances in genomics leading to broad understanding of human disease, the linkage between chemical exposome and diseases is still under investigation. High-resolution mass spectrometry (HRMS) is expected to accelerate the process via relatively accurate and precise biomonitoring of human exposome. This review covers recent advancements in biomonitoring of exposed environmental chemicals (chemical exposome) using HRMS described in the 124 articles that resulted from a systematic literature search on Medline and Web of Science databases. The analytical strategic aspects, including the selection of specimens, sample preparation, instrumentation, untargeted versus targeted analysis, and workflows for MS-based biomonitoring to explore the environmental chemical space of human exposome, are deliberated. Applications of HRMS in human exposome investigation are presented by biomonitoring (1) exposed chemical compounds and their biotransformation products; (2) DNA/protein adducts; and (3) endogenous compound perturbations. Challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Yuan-Chih Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Jing-Fang Hsu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Shih-Wen Li
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Ya-Chi Yang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hauh-Jyun C Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Chen CJ, Lee DY, Yu J, Lin YN, Lin TM. Recent advances in LC-MS-based metabolomics for clinical biomarker discovery. MASS SPECTROMETRY REVIEWS 2023; 42:2349-2378. [PMID: 35645144 DOI: 10.1002/mas.21785] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/14/2021] [Accepted: 11/18/2021] [Indexed: 06/15/2023]
Abstract
The employment of liquid chromatography-mass spectrometry (LC-MS) untargeted and targeted metabolomics has led to the discovery of novel biomarkers and improved the understanding of various disease mechanisms. Numerous strategies have been reported to expand the metabolite coverage in LC-MS-untargeted and targeted metabolomics. To improve the sensitivity of low-abundance or poor-ionized metabolites for reducing the amount of clinical sample, chemical derivatization methods are used to target different functional groups. Proper sample preparation is beneficial for reducing the matrix effect, maintaining the stability of the LC-MS system, and increasing the metabolite coverage. Machine learning has recently been integrated into the workflow of LC-MS metabolomics to accelerate metabolite identification and data-processing automation, and increase the accuracy of disease classification and clinical outcome prediction. Due to the rapidly growing utility of LC-MS metabolomics in discovering disease markers, this review will address the recent advances in the field and offer perspectives on various strategies for expanding metabolite coverage, chemical derivatization, sample preparation, clinical disease markers, and machining learning for disease modeling.
Collapse
Affiliation(s)
- Chao-Jung Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jiaxin Yu
- AI Innovation Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ning Lin
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Min Lin
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
8
|
van de Lavoir M, da Silva KM, Iturrospe E, Robeyns R, van Nuijs ALN, Covaci A. Untargeted hair lipidomics: comprehensive evaluation of the hair-specific lipid signature and considerations for retrospective analysis. Anal Bioanal Chem 2023; 415:5589-5604. [PMID: 37468753 DOI: 10.1007/s00216-023-04851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Lipidomics investigates the composition and function of lipids, typically employing blood or tissue samples as the primary study matrices. Hair has recently emerged as a potential complementary sample type to identify biomarkers in early disease stages and retrospectively document an individual's metabolic status due to its long detection window of up to several months prior to the time of sampling. However, the limited coverage of lipid profiling presented in previous studies has hindered its exploitation. This study aimed to evaluate the lipid coverage of hair using an untargeted liquid chromatography-high-resolution mass spectrometry lipidomics platform. Two distinct three-step exhaustive extraction experiments were performed using a hair metabolomics one-phase extraction technique that has been recently optimized, and the two-phase Folch extraction method which is recognized as the gold standard for lipid extraction in biological matrices. The applied lipidomics workflow improved hair lipid coverage, as only 99 species could be annotated using the one-phase extraction method, while 297 lipid species across six categories were annotated with the Folch method. Several lipids in hair were reported for the first time, including N-acyl amino acids, diradylglycerols, and coenzyme Q10. The study suggests that hair lipids are not solely derived from de novo synthesis in hair, but are also incorporated from sebum and blood, making hair a valuable matrix for clinical, forensic, and dermatological research. The improved understanding of the lipid composition and analytical considerations for retrospective analysis offers valuable insights to contextualize untargeted hair lipidomic analysis and facilitate the use of hair in translational studies.
Collapse
Affiliation(s)
- Maria van de Lavoir
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Katyeny Manuela da Silva
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Elias Iturrospe
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rani Robeyns
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Alexander L N van Nuijs
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
9
|
Tan TH, Li SW, Chang CW, Chen YC, Liu YH, Ma JT, Chang CP, Liao PC. Rat Hair Metabolomics Analysis Reveals Perturbations of Unsaturated Fatty Acid Biosynthesis, Phenylalanine, and Arachidonic Acid Metabolism Pathways Are Associated with Amyloid-β-Induced Cognitive Deficits. Mol Neurobiol 2023; 60:4373-4395. [PMID: 37095368 PMCID: PMC10293421 DOI: 10.1007/s12035-023-03343-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Hair is a noninvasive valuable biospecimen for the long-term assessment of endogenous metabolic disturbance. Whether the hair is suitable for identifying biomarkers of the Alzheimer's disease (AD) process remains unknown. We aim to investigate the metabolism changes in hair after β-amyloid (Aβ1-42) exposure in rats using ultra-high-performance liquid chromatography-high-resolution mass spectrometry-based untargeted and targeted methods. Thirty-five days after Aβ1-42 induction, rats displayed significant cognitive deficits, and forty metabolites were changed, of which twenty belonged to three perturbed pathways: (1) phenylalanine metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis-L-phenylalanine, phenylpyruvate, ortho-hydroxyphenylacetic acid, and phenyllactic acid are up-regulated; (2) arachidonic acid (ARA) metabolism-leukotriene B4 (LTB4), arachidonyl carnitine, and 5(S)-HPETE are upregulation, but ARA, 14,15-DiHETrE, 5(S)-HETE, and PGB2 are opposite; and (3) unsaturated fatty acid biosynthesis- eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), FA 18:3 + 1O, and FA 18:3 + 2O are downregulated. Linoleic acid metabolism belonging to the biosynthesis of unsaturated fatty acid includes the upregulation of 8-hydroxy-9,10-epoxystearic acid, 13-oxoODE, and FA 18:2 + 4O, and downregulation of 9(S)-HPODE and dihomo-γ-linolenic acid. In addition, cortisone and dehydroepiandrosterone belonging to steroid hormone biosynthesis are upregulated. These three perturbed metabolic pathways also correlate with cognitive impairment after Aβ1-42 stimulation. Furthermore, ARA, DHA, EPA, L-phenylalanine, and cortisone have been previously implicated in the cerebrospinal fluid of AD patients and show a similar changing trend in Aβ1-42 rats' hair. These data suggest hair can be a useful biospecimen that well reflects the expression of non-polar molecules under Aβ1-42 stimulation, and the five metabolites have the potential to serve as novel AD biomarkers.
Collapse
Affiliation(s)
- Tian-Hoe Tan
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan
- Department of Senior Services, Southern Taiwan University of Science and Technology, No.1, Nantai St., Yungkang Dist., Tainan, 710, Taiwan
| | - Shih-Wen Li
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Yuan-Chih Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Yu-Hsuan Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Jui-Ti Ma
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang Dist., Tainan, 710, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang Dist., Tainan, 710, Taiwan.
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan.
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
10
|
Chang CW, Hsu JY, Su YH, Chen YC, Hsiao PZ, Liao PC. Monitoring long-term chemical exposome by characterizing the hair metabolome using a high-resolution mass spectrometry-based suspect screening approach. CHEMOSPHERE 2023; 332:138864. [PMID: 37156292 DOI: 10.1016/j.chemosphere.2023.138864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Hair has recently emerged as a biospecimen for characterizing the long-term chemical exposome in biomonitoring investigations spanning several months, as chemical compounds circulating in the bloodstream accumulate in hair. Although there has been interest in using human hair as a biospecimen for exposome studies, it has yet to be widely adopted compared to blood and urine. Here, we applied a high-resolution mass spectrometry (HRMS)-based suspect screening strategy to characterize the long-term chemical exposome in human hair. Hair samples were collected from 70 subjects and cut into 3 cm segments, which were then mixed to prepare pooled samples. The pooled hair samples underwent a sample preparation procedure, and the hair extracts were further analyzed using an HRMS-based suspect screening approach. An in-house chemical suspect list containing 1227 chemical entries from National Report on Human Exposure to Environmental Chemicals (Report) published by the U.S. CDC and the Exposome-Explorer 3.0 database developed by the WHO was subsequently used to screen and filter the suspect features against the HRMS dataset. Overall, we matched 587 suspect features in the HRMS dataset to 246 unique chemical formulas in the suspect list, and the structures of 167 chemicals were further identified through a fragmentation analysis. Among these, chemicals such as mono-2-ethylhexyl phthalate, methyl paraben, and 1-naphthol, which have been detected in the urine or blood for exposure assessment, were also identified in human hair. This suggests that hair reflects the accumulation of environmental compounds to which an individual is exposed. Exposure to exogenous chemicals may exert adverse effects on cognitive function, and we discovered 15 chemicals in human hair that may contribute to the pathogenesis of Alzheimer's disease. This finding suggests that human hair may be a promising biospecimen for monitoring long-term exposure to multiple environmental chemicals and perturbations in endogenous chemicals in biomonitoring investigations.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Yi Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Su
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, 60002, Taiwan
| | - Yuan-Chih Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Zu Hsiao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
11
|
Chang CW, Hsu JY, Hsiao PZ, Chen YC, Liao PC. Identifying Hair Biomarker Candidates for Alzheimer's Disease Using Three High Resolution Mass Spectrometry-Based Untargeted Metabolomics Strategies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:550-561. [PMID: 36973238 DOI: 10.1021/jasms.2c00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
High-resolution mass spectrometry (HRMS)-based untargeted metabolomics strategies have emerged as an effective tool for discovering biomarkers of Alzheimer's disease (AD). There are various HRMS-based untargeted metabolomics strategies for biomarker discovery, including the data-dependent acquisition (DDA) method, the combination of full scan and target MS/MS, and the all ion fragmentation (AIF) method. Hair has emerged as a potential biospecimen for biomarker discovery in clinical research since it might reflect the circulating metabolic profiles over several months, while the analytical performances of the different data acquisition methods for hair biomarker discovery have been rarely investigated. Here, the analytical performances of three data acquisition methods in HRMS-based untargeted metabolomics for hair biomarker discovery were evaluated. The human hair samples from AD patients (N = 23) and cognitively normal individuals (N = 23) were used as an example. The most significant number of discriminatory features was acquired using the full scan (407), which is approximately 10-fold higher than that using the DDA strategy (41) and 11% higher than that using the AIF strategy (366). Only 66% of discriminatory chemicals discovered in the DDA strategy were discriminatory features in the full scan dataset. Moreover, compared to the deconvoluted MS/MS spectra with coeluted and background ions from the AIF method, the MS/MS spectrum obtained from the targeted MS/MS approach is cleaner and purer. Therefore, an untargeted metabolomics strategy combining the full scan with the targeted MS/MS method could obtain most discriminatory features along with a high quality MS/MS spectrum for discovering the AD biomarkers.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 704, Taiwan
| | - Jen-Yi Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 704, Taiwan
| | - Ping-Zu Hsiao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 704, Taiwan
| | - Yuan-Chih Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 704, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 704, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 704, Taiwan
| |
Collapse
|
12
|
Su YH, Chang CW, Hsu JY, Li SW, Sung PS, Wang RH, Wu CH, Liao PC. Discovering Hair Biomarkers of Alzheimer's Disease Using High Resolution Mass Spectrometry-Based Untargeted Metabolomics. Molecules 2023; 28:molecules28052166. [PMID: 36903413 PMCID: PMC10004788 DOI: 10.3390/molecules28052166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Hair may be a potential biospecimen to discover biomarkers for Alzheimer's disease (AD) since it reflects the integral metabolic profiles of body burden over several months. Here, we described the AD biomarker discovery in the hair using a high-resolution mass spectrometry (HRMS)-based untargeted metabolomics approach. A total of 24 patients with AD and 24 age- and sex-matched cognitively healthy controls were recruited. The hair samples were collected 0.1-cm away from the scalp and further cut into 3-cm segments. Hair metabolites were extracted by ultrasonication with methanol/phosphate-buffered saline 50/50 (v/v) for 4 h. A total of 25 discriminatory chemicals in hair between the patients with AD and controls were discovered and identified. The AUC value achieved 0.85 (95% CI: 0.72~0.97) in patients with very mild AD compared to healthy controls using a composite panel of the 9 biomarker candidates, indicating high potential for the initiation or promotion phase of AD dementia in the early stage. A metabolic panel combined with the nine metabolites may be used as biomarkers for the early detection of AD. The hair metabolome can be used to reveal metabolic perturbations for biomarker discovery. Investigating perturbations of the metabolites will offer insight into the pathogenesis of AD.
Collapse
Affiliation(s)
- Yu-Hsiang Su
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Yi Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Shih-Wen Li
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pi-Shan Sung
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ru-Hsueh Wang
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Chih-Hsing Wu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence:
| |
Collapse
|
13
|
Nguyen KN, Saxena R, Re DB, Yan B. Rapid LC-MS/MS quantification of Organophosphate non-specific metabolites in hair using alkaline extraction approach. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1217:123619. [PMID: 36774786 PMCID: PMC10474783 DOI: 10.1016/j.jchromb.2023.123619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
Assessing human exposure to commonly used, highly toxic, but non-persistent organophosphates (OPs) is challenging because these toxicants are readily biotransformed into dialkyl phosphates (DAPs) and other metabolites. Growing hair accumulates toxicants and their metabolites, which makes hair a valuable non-invasively sampled matrix that can be used to retrospectively examine chemical exposure. However, the efficient quantification of hydrophilic DAP compounds in hair is challenging due to complex hair matrix effects. To improve upon existing methods, we first examined the acid dissociation constants (pKa) of DAPs and amino acids (major components in hair) and identified the best pH conditions for minimizing matrix effects. We hypothesized that under basic pH conditions DAPs and amino acids would be negatively charged and have weak interactions favorable to DAP dissociation from the matrix. To test this, we compared the efficiency of various pH conditions of suitable solvents to extract six DAPs from hair samples, and we quantified these DAPs using liquid chromatography-tandem mass spectroscopy (LC-MS/MS). As expected, a basic extraction (methanol with 2% NH4OH) approach had the highest extraction efficiency and yielded satisfactory recoveries for all six DAPs (72%-152%) without matrix effects. Additionally, the alkaline extract can be directly injected into the LC-MS/MS. This relatively rapid and simple procedure allowed us to process up to 90 samples per week with reproducible results. To our knowledge, this is the first method to quantify all six DAPs simultaneously in hair using LC-MS/MS with electrospray ionization (ESI) in negative ion mode. Finally, we demonstrated the feasibility of measuring DAP levels in hair samples from patients affected with amyotrophic lateral sclerosis (ALS), a neurodegenerative disease potentially linked to OP exposure. Due to our optimized solvent extraction process, the method we have developed is compatible with the rapidity and sensitivity needed for hair analysis applied to population biomonitoring.
Collapse
Affiliation(s)
- Khue N Nguyen
- Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Roheeni Saxena
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; NIEHS Center for Environmental Health and Justice in Northern Manhattan, Columbia University, New York, NY 10032, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; NIEHS Center for Environmental Health and Justice in Northern Manhattan, Columbia University, New York, NY 10032, USA
| | - Beizhan Yan
- Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, USA; NIEHS Center for Environmental Health and Justice in Northern Manhattan, Columbia University, New York, NY 10032, USA.
| |
Collapse
|