1
|
Li JM, Liu YZ, Lv XF, Zhou DH, Zhang H, Chen YJ, Li K. Construction of a novel aminofluorene-based ratiometric near-infrared fluorescence probe for detecting carboxylesterase activity in living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3641-3645. [PMID: 38812419 DOI: 10.1039/d4ay00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Herein, we constructed a novel aminofluorene-based fluorescence probe (FEN-CE) for the detection of carboxylesterase (CE) in living cells by a ratiometric near-infrared (NIR) fluorescence signal. FEN-CE with NIR emission (650 nm) could be hydrolyzed specifically by CE and transformed to FENH with the release of the self-immolative group, which exhibited a red-shifted emission peak of 680 nm. In addition, FEN-CE showed high selectivity for CE and was successfully used in the detection of CE activity in living cells through its ratiometric NIR fluorescence signals.
Collapse
Affiliation(s)
- Jun-Mei Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yan-Zhao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Xiao-Fang Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Ding-Heng Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Hong Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yu-Jin Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| |
Collapse
|
2
|
Feng J, Gong Y, Yang S, Qiu G, Tian H, Sun B. Determination of carboxylesterase by fluorescence probe to guide detection of carbamate pesticide. LUMINESCENCE 2024; 39:e4625. [PMID: 37947027 DOI: 10.1002/bio.4625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/10/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
A carboxylesterase fluorescent probe (Probe 1) was developed for determination of carboxylesterase to guide detection of carbamate pesticide. The probe uses benzothiazole as fluorescence group and phenyldimethyl carbamate as recognition group. The solution of the fluorescent probe gradually changes from light blue to dark blue as the concentration of carbamate pesticides increases. The concentration of carbamate pesticides can be quickly calculated according to the colour of the probe solution through Get Color software on a smartphone. It showed that Probe 1 can be used as a rapid detection tool to achieve rapid detection of carbamate pesticides in juice samples without professional personnel and equipment. Furthermore, the probe has been successfully used to detect carbamate pesticides in fruit juice and vegetable juice.
Collapse
Affiliation(s)
- Jingyi Feng
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Yue Gong
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Shaoxiang Yang
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Guo Qiu
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Hongyu Tian
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
3
|
Zhou Y, Dai J, Qi J, Wu J, Huang Y, Shen B, Zhi X, Fu Y. Construction of a red emission fluorescent probe for selectively detection of cysteine in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121946. [PMID: 36242837 DOI: 10.1016/j.saa.2022.121946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/08/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Cysteine (Cys) is a vital amino acid in the body, and its abnormal expression level is associated with many diseases. In this study, a novel fluorescent probe ACHB was synthesized, showing high selectivity, anti-interference ability and achieving accurate detection of cysteine. Different from most previous off-on probes, ACHB showed an on-off fluorescence response to Cys. Acrylic ester was used as a recognizer while green fluorescence protein (GFP) chromophore derivative 4-hydroxybenzylidene-imidazolinone (HBI) was used as the fluorophore. The addition of Cys leads to the hydrolysis of the red-emitting probe (613 nm), releasing a precursor with a lower fluorescent signal and showing an on-off spectral signal, which was ideal for obtaining sensitive detection with high specificity. Furthermore, the probe was successfully applied for simultaneous determination of cysteine (Cys) in living cells and biological sample (mouse serum). In conclusion, probe ACHB is a promising tool to display the intracellular cysteine concentration level, providing a good visualization method for clinical diagnosis and scientific basic research.
Collapse
Affiliation(s)
- Yufeng Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jianan Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jinzhi Qi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jichun Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yubo Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Xu Zhi
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yongqian Fu
- School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China.
| |
Collapse
|
4
|
Fluorogenic toolbox for facile detecting of hydroxyl radicals: From designing principles to diagnostics applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Zhang L, Yan JL, Wang Y, Zhao XL, Wu WN, Fan YC, Xu ZH, Yan LL. A novel indene-chalcone-based fluorescence probe with lysosome-targeting for detection of endogenous carboxylesterases and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121329. [PMID: 35576837 DOI: 10.1016/j.saa.2022.121329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
An indene-chalcone-based fluorescence probe 1 was synthesized and characterized. Under physiological conditions (containing 5% DMSO), probe 1 showed satisfactory stability with a low background signal and recognized carboxylesterases (CEs) based on the catalytic hydrolysis of ester groups, releasing a significant green fluorescence. Probe 1 presents several features including a short response time (within 20 min), low detection limit (1.3 × 10-4 U/mL) and large stokes shift (over 155 nm). Notably, commercial lysosomal dye co-staining experiments illustrated the lysosomal localization function of 1, with the probe also being used for cell and zebrafish imaging of endogenous CEs.
Collapse
Affiliation(s)
- Ling Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Jin-Long Yan
- Institute of Synthetic Technology, Jiaozuo Normal College, Jiaozuo 454001, PR China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, School of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000, PR China; College of Chemistry, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Ling-Ling Yan
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| |
Collapse
|
6
|
Liu Y, He Z, Yang Y, Li X, Li Z, Ma H. New fluorescent probe with recognition moiety of bipiperidinyl reveals the rise of hepatocellular carboxylesterase activity during heat shock. Biosens Bioelectron 2022; 211:114392. [DOI: 10.1016/j.bios.2022.114392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 05/15/2022] [Indexed: 12/14/2022]
|
7
|
Highly specific esterase activated AIE plus ESIPT probe for sensitive ratiometric detection of carbaryl. Talanta 2022; 246:123517. [PMID: 35523022 DOI: 10.1016/j.talanta.2022.123517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 12/30/2022]
Abstract
Fabrication of facile, sensitive, and accurate pesticide detection strategies plays crucial roles in food safety, environmental protection, and human health. Here, a novel esterase activatable aggregation-induced emission (AIE) plus excited-state intramolecular proton transfer (ESIPT) probe, kaempferol tetraacetate, was designed and synthesized from purified natural kaempferol for ratiometric sensing of carbaryl. Acetate groups are introduced as the esterase reactive sites and AIE plus ESIPT initiator. Kaempferol tetraacetate is an aggregation-caused quenching compound that shows fluorescent (FL) emission at 415 nm. Esterase specifically hydrolyzes kaempferol tetraacetate to kaempferol with AIE plus ESIPT characteristics (distinct FL emission, 530 nm; a large Stokes shift, 165 nm within a short time (8 min). Molecular docking and kinetics performance indicate the high affinity and specific hydrolysis of esterase and kaempferol tetraacetate. Carbaryl inhibits the activity of esterase to efficiently suppress the production of kaempferol. Thus, a facile ratiometric assay strategy is constructed for carbaryl detection. By measuring the FL intensity ratio, the proposed strategy presents high selectivity and reliability with a wide linear range from 0.02 to 2.00 μg L-1 and a very low limit of detection at 0.007 μg L-1. Furthermore, appropriate recovery from 93.75% to 108.67% with a relative standard deviation less than 5.66% for real sample analysis indicates good accuracy and precision. All results indicate that the fabricated strategy offers a new way for facile, sensitive, and accurate detection of carbaryl in real complex samples.
Collapse
|
8
|
High-throughput optical assays for sensing serine hydrolases in living systems and their applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Nguyen DK, Jang CH. Simple and Label-Free Detection of Carboxylesterase and Its Inhibitors Using a Liquid Crystal Droplet Sensing Platform. MICROMACHINES 2022; 13:490. [PMID: 35334782 PMCID: PMC8954150 DOI: 10.3390/mi13030490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/26/2022]
Abstract
In this study, we developed a liquid crystal (LC) droplet-based sensing platform for the detection of carboxylesterase (CES) and its inhibitors. The LC droplet patterns in contact with myristoylcholine chloride (Myr) exhibited dark cross appearances, corresponding to homeotropic anchoring of the LCs at the aqueous/LC interface. However, in the presence of CES, Myr was hydrolyzed; therefore, the optical images of the LC patterns changed to bright fan-shaped textures, corresponding to a planar orientation of LCs at the interface. In contrast, the presence of CES inhibitors, such as benzil, inhibits the hydrolysis of Myr; as a result, the LC patterns exhibit dark cross textures. This principle led to the development of an LC droplet-based sensing method with a detection limit of 2.8 U/L and 10 μM, for CES detection and its inhibitor, respectively. The developed biosensor not only enables simple and label-free detection of CES but also shows high promise for the detection of CES inhibitors.
Collapse
Affiliation(s)
| | - Chang-Hyun Jang
- Department of Chemistry, Gachon University, Seongnam-daero 1342, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea;
| |
Collapse
|
10
|
Zhu X, Chen L, Liu T, He S, Zhao X, Tian Y, Fang Y, Cui J. Detecting the combined toxicity of 18 binary and 24 ternary pesticide combinations to carboxylesterase based on fluorescence probe technology. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:305-315. [PMID: 35287560 DOI: 10.1080/03601234.2022.2049158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A rapid test method for the determination of pesticide toxicity was established by using carboxylesterase (CES) and fluorescence probe ACE-NH based on the principle of enzyme inhibition, and this method was applied to detect the combined toxicity of 18 binary and 24 ternary pesticide combinations commonly used for fruits and vegetables to CES. The results show that chlorpyrifos + carbendazim, carbofuran + carbendazim, imidacloprid + carbendazim, imidacloprid + dimethomorph, dimethoate + dimethomorph, prochloraz + carbendazim and imidacloprid + acetamiprid + carbendazim had synergistic effects under three concentration gradients, it indicated that most binary combinations containing carbendazim or imidacloprid had synergistic effects. Based on structure-activity relationship between pesticides and CES, pesticides with phosphate ester bonds had great toxicity to CES, or though they have no toxicity to CES alone, they showed a strong synergistic effect when mixed with other pesticides. Pesticides with amide or ester bond had medium toxicity and little synergistic effect. Pesticides with urea, carbamate or nitrite nitrogen group had little or no toxicity, while there was a strong synergistic effect after mixing with other pesticides. The test method and results in this study can provide scientific basis for risk assessment of cumulative exposure to mixed pesticide residues.
Collapse
Affiliation(s)
- Xinyue Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Lisen Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Shengui He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Xin Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Yinong Tian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Yanjun Fang
- A Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| |
Collapse
|
11
|
|
12
|
Wang Y, Ma C, Zheng X, Ju M, Fu Y, Zhang X, Shen B. A red emission multiple detection site probe for detecting carboxylesterase 1 based on BODIPY fluorophore. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Wu J, Dai J, Zhao Y, Li J, Ju M, Zhang X, Shen B. Sensitive Detection of Protamine Based on a Yellow Emission Fluorophore. ChemistrySelect 2021. [DOI: 10.1002/slct.202102354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jichun Wu
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan road China
| | - Jianan Dai
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan road China
| | - Yu Zhao
- Department of Food Science Cornell University Ithaca NY 14853 United States
| | - Jingmin Li
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan road China
| | - Minzi Ju
- Department of Pharmacology Southeast University Nanjing Jiangsu 210009 China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan road China
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan road China
| |
Collapse
|
14
|
Zheng X, Dai J, Shen B, Zhang X. Quantitative determination of protamine using a fluorescent protein chromophore-based AIE probe. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|