1
|
Çiçek Özkul SL, Kaba İ, Ozdemir Olgun FA. Unravelling the potential of magnetic nanoparticles: a comprehensive review of design and applications in analytical chemistry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3620-3640. [PMID: 38814019 DOI: 10.1039/d4ay00206g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The study of nanoparticles has emerged as a prominent research field, offering a wide range of applications across various disciplines. With their unique physical and chemical properties within the size range of 1-100 nm, nanoparticles have garnered significant attention. Among them, magnetic nanoparticles (MNPs) exemplify promising super-magnetic characteristics, especially in the 10-20 nm size range, making them ideal for swift responses to applied magnetic fields. In this comprehensive review, we focus on MNPs suitable for analytical purposes. We investigate and classify them based on their analytical applications, synthesis routes, and overall utility, providing a detailed literature summary. By exploring a diverse range of MNPs, this review offers valuable insights into their potential application in various analytical scenarios.
Collapse
Affiliation(s)
- Serra Lale Çiçek Özkul
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak Campus, Sariyer, Istanbul, Turkey
| | - İbrahim Kaba
- Marmara University, Faculty of Engineering, Department of Chemical Engineering, Maltepe, Istanbul, Turkey
| | - Fatos Ayca Ozdemir Olgun
- Istanbul Health and Technology University, Faculty of Engineering and Natural Sciences, Department of Chemical Engineering, Sutluce, Beyoglu, Istanbul, Turkey.
| |
Collapse
|
2
|
Martínez SAH, Melchor-Martínez EM, Hernández JAR, Parra-Saldívar R, Iqbal HM. Magnetic nanomaterials assisted nanobiocatalysis systems and their applications in biofuels production. FUEL 2022. [DOI: 10.1016/j.fuel.2021.122927] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Ma H, Zhang Y, Duan T, Zhang J, Yang F, Zhang Y, Dong Y. Preparation and evaluation of poly (1-allyl-3-methylimidazole chloride@1,6-hexanediol dimethacrylate) conventional size monolithic column for HPLC. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Wang L, Liu M, Sun F, Liu H, Yan H, Bai L. Extraction and determination of tussilagone from Farfarae Flos with online solid-phase extraction-high-performance liquid chromatography using a homemade monolithic cartridge doped with porous organic cage material. J Sep Sci 2021; 44:4412-4421. [PMID: 34687475 DOI: 10.1002/jssc.202100649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023]
Abstract
A solid-phase extraction cartridge was fabricated using diallyl isophthalate as the monomer with the addition of porous organic cage material via in situ free-radical polymerization in a stainless-steel column. The resulting monolithic adsorbent exhibited a relatively uniform porous structure, a high specific surface area of 113.98 m2 /g, and multiple functional chemical groups according to the characterization results. An online solid-phase extraction-high-performance liquid chromatography procedure was fabricated to extract and determine tussilagone from Farfarae Flos. The results show that the complex sample matrices can be removed in the solid-phase extraction procedure. Simultaneously, tussilagone can remain, which can be subsequently switched to an octadecylsilane bonded analytical column. The methodological validation showed that the correlation coefficient was 0.9999 with a linear range of 0.6-200.0 µg/mL, the limit of detection was 0.2 µg/mL, the limit of quantification was 0.6 µg/mL, accuracy was 100.3-100.6%, and relative standard deviation of precision was ≤1.9%. The present monolithic cartridge exhibits good reusability of not more than 100 times. The real sample of Farfarae Flos was determined with a tussilagone content of 0.74 mg/g.
Collapse
Affiliation(s)
- Laisen Wang
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, P. R. China
| | - Miaomiao Liu
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, P. R. China
| | - Fanrong Sun
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, P. R. China
| | - Haiyan Liu
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, P. R. China.,Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding, P. R. China
| | - Hongyuan Yan
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, P. R. China.,Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding, P. R. China
| | - Ligai Bai
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding, P. R. China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, P. R. China
| |
Collapse
|
5
|
Xiao J, Lu Q, Cong H, Shen Y, Yu B. Microporous poly(glycidyl methacrylate- co-ethylene glycol dimethyl acrylate) microspheres: synthesis, functionalization and applications. Polym Chem 2021. [DOI: 10.1039/d1py00834j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As a new kind of functional material, micron-sized porous polymer microspheres are a hot research topic in the field of polymer materials.
Collapse
Affiliation(s)
- Jingyuan Xiao
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qingbiao Lu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|