1
|
Mercan S, Kilic MD, Zengin S, Yayla M. Experimental study for inorganic and organic profiling of toy makeup products: Estimating the potential threat to child health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33975-33992. [PMID: 38696006 PMCID: PMC11136717 DOI: 10.1007/s11356-024-33362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/12/2024] [Indexed: 05/31/2024]
Abstract
Inorganic elements are added to toys as impurities to give desired stability, brightness, flexibility, and color; however, these elements may cause numerous health issues after acute or chronic exposure. In this study, the inorganic profile of 14 elements (Al, As, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Se, Sb, Pb, and Zn) in 63 toy makeup products was identified by inductively coupled plasma-mass spectrometry after microwave acid digestion method. Additionally, organic allergen fragrance was investigated by gas chromatography-mass spectrometry. The systemic exposure dosage (SED), margin of safety (MoS), lifetime cancer risk (LCR), hazard quotient (HQ), and hazard indices were used to assess the safety evaluation. Then, 57 out of 63 samples (90.48%) exceeded the limits at least for one toxic element with descending order Ni > Cr > Co > Pb > Sb > Cd > As > Hg. The SED values were compared with tolerable daily intake values and remarkably differences were found for Al and Pb. The MoS values for 57.15% of samples exceeded the limit value for Al, As, Cd, Co, Hg, Mn, Sb, and Zn elements. The LCR values were observed at 100% (n = 63), 79.37% (n = 50), 85.71% (n = 54), 77.78% (n = 49), and 18.87% (n = 10) for Cr, Ni, As, Pb, and Cd, respectively. Also, the skin sensitization risks were obtained for Cr and Ni at 26.980% (n = 17) and 9.52% (n = 6), respectively. The HQ values for 80% of samples were found to be ≥ 1 at least for one parameter. The investigation of fragrance allergens in samples did not show any significant ingredients. As a result, toy makeup products marketed in local stores were found to be predominantly unsafe. Children should be protected from harmful chemicals by regular monitoring and strict measures.
Collapse
Affiliation(s)
- Selda Mercan
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey.
| | - Mihriban Dilan Kilic
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| | - Simge Zengin
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| | - Murat Yayla
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
2
|
Zeger VR, Bell DS, Anderson JL. Polymeric ionic liquid sorbent coatings in thin film microextraction: Insight into sorbent selectivity for pesticides and cannabinoids. J Chromatogr A 2024; 1715:464583. [PMID: 38160584 DOI: 10.1016/j.chroma.2023.464583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Polymeric ionic liquid (PIL) sorbent coatings consisting of polymerizable cations and anions were employed as sorbent coatings in thin film microextraction (TFME) for the extraction of pesticides and cannabinoids. The blades consisted of a thin film of PIL sorbents chemically bonded to vinyltrimethoxysilane-functionalized nitinol sheets. The imidazolium- or ammonium-based PIL sorbents contained aromatic benzyl moieties as well as polar hydroxyl groups or aliphatic functional groups within the chemical structure of the IL monomer. The chemical structure of the IL crosslinkers of the PILs were kept constant across each sorbent, except for the anion, which consisted of either bis[(trifluoromethyl)sulfonyl]imide ([NTf2-]), p-styrenesulfonate ([SS-]), or 3-sulfopropyl acrylate ([SPA-]). Temperature, salt content, and methanol content were optimized as extraction conditions to maximize pesticide-cannabinoid selectivity using Doehlert design of experiments (DOE). Effects of these three factors on selectivity and extraction efficiency are discussed. The optimal extraction conditions consisting of sample temperature (31°C), sodium chloride (30% w/v), and methanol content (0.25% v/v) are compared to initial sorbent screening conditions at a sample temperature of 40°C, 15% (w/v) sodium chloride, and 2.5% (v/v) methanol content. PIL sorbent swelling behavior at different salt and methanol content conditions and its effect on extraction efficiency are hypothesized. Selectivity factors for the sorbents indicated that aromatic moieties within the IL monomer may enhance pesticide-cannabinoid selectivity under optimized conditions, but the extraction efficiency of pesticides that are known to coelute with cannabinoids in the chromatographic separation may be enhanced by employing sorbent coatings with [SPA-] anions.
Collapse
Affiliation(s)
- Victoria R Zeger
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA 50011, USA
| | - David S Bell
- Restek Corporation, 110 Benner Circle, Bellefonte, Pennsylvania 16823, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA 50011, USA.
| |
Collapse
|
3
|
Riboni N, Ribezzi E, Marraffa E, Mora P, Bellucci C, Bianchi F, Careri M. An ex vivo headspace gas chromatography-mass spectrometry method for the determination of short-chain siloxanes in silicon oil tamponades used in ophthalmic surgery. J Pharm Biomed Anal 2024; 238:115871. [PMID: 38006704 DOI: 10.1016/j.jpba.2023.115871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Being able to facilitate retinal reattachment by preventing water migration into the subretinal space, silicone oils are widely used as long-term intraocular tamponade to treat cases of retinal detachment. Various commercial tamponades constituted by linear polydimethylsiloxane polymers with different molecular weights and cyclic impurities are available. In this study, for the first time, an untargeted headspace-gas-chromatography-mass spectrometry (HS-GC-MS) method was developed to identify low-molecular weight contaminants in three different types of silicone oil tamponades, namely Siluron 2000, RS-OIL ECS5000 and Densiron Xtra. Both commercial and post-operative tamponades were analysed to screen for the different classes of compounds present in the samples. The most abundant classes were short-chain siloxanes, fluorinated compounds, and hydrocarbons. To quantify the siloxanes present in the samples, a targeted HS-GS-MS was optimized using a central composite design and validated according to guidelines for bioanalytical methods. Lower limits of quantification in the low μg/L range, good precision with RSD% < 12% and accuracy with recovery rates in the 81 ( ± 7) - 96 ( ± 4) % range were achieved. Short-chain siloxanes were quantified in both commercial and post-operative tamponades, being the RS-OIL ECS5000 characterized by the highest concentration levels of the investigated analytes. By contrast, Densiron Xtra tamponades showed the lowest amount of short-chain siloxanes, observing a general decrease in their concentration levels according to the residence time in the eyes.
Collapse
Affiliation(s)
- Nicolò Riboni
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 17/A, 43124 Parma, Italy.
| | - Erika Ribezzi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 17/A, 43124 Parma, Italy
| | - Enrico Marraffa
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 17/A, 43124 Parma, Italy
| | - Paolo Mora
- Ophthalmology Unit, University Hospital of Parma, Via Gramsci 14, 43100 Parma, Italy
| | - Carlo Bellucci
- Ophthalmology Unit, University Hospital of Parma, Via Gramsci 14, 43100 Parma, Italy
| | - Federica Bianchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 17/A, 43124 Parma, Italy.
| | - Maria Careri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 17/A, 43124 Parma, Italy
| |
Collapse
|
4
|
Riboni N, Bianchi F, Scaccaglia M, Bisceglie F, Secchi A, Massera C, Luches P, Careri M. A novel multiwalled carbon nanotube-cyclodextrin nanocomposite for solid-phase microextraction-gas chromatography-mass spectrometry determination of polycyclic aromatic hydrocarbons in snow samples. Mikrochim Acta 2023; 190:212. [PMID: 37171627 PMCID: PMC10181969 DOI: 10.1007/s00604-023-05799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Novel solid-phase microextraction coatings based on the use of multiwalled carbon nanotube-cyclodextrin (MWCNT-CD) nanocomposites were developed for the determination of 16-priority polycyclic aromatic hydrocarbons at ultratrace levels in snow samples. The performance of both β- and γ-CD was tested to increase the detection capabilities towards the heaviest and most lipophilic compounds, i.e., five- and six-ring PAHs. To facilitate the interactions of MWCNTs with CDs, an oxidation procedure using both HNO3 and H2O2 was applied, obtaining superior results using MWCNTs-H2O2-γ-CD fiber. Detection and quantitation limits below 0.7 and 2.3 ng/L, RSD lower than 21%, and recoveries of 88(± 2)-119.8(± 0.4)% proved the reliability of the developed method for the determination of PAHs at ultratrace levels. The complexation capability of the γ-CD was also demonstrated in solution by NMR and fluorescence spectroscopy studies and at solid state by XRD analysis. Finally, snow samples collected in the ski area of Dolomiti di Brenta were analyzed, showing a different distribution of the 16 priority PAHs, being naphthalene, phenanthrene, fluoranthene, and pyrene the only compounds detected in all the analyzed samples.
Collapse
Affiliation(s)
- N Riboni
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| | - F Bianchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
- University of Parma, Center for Energy and Environment (CIDEA), Parco Area delle Scienze 42, 43124, Parma, Italy.
| | - M Scaccaglia
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - F Bisceglie
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - A Secchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - C Massera
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - P Luches
- Nanoscience Institute, CNR, via G. Campi 213/A, 41125, Modena, Italy
| | - M Careri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
5
|
Huang TY, Yu JCC. Carbon nanotubes-assisted solid-phase microextraction for the extraction of gasoline in fire debris samples. J Chromatogr A 2023; 1701:464063. [PMID: 37201431 DOI: 10.1016/j.chroma.2023.464063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Gasoline is one of the most encountered ignitable liquids (IL) in fire debris analysis. The extraction of gasoline from fire debris samples presents challenges due to the complicated nature of multicomponent mixtures. This research work proposed a novel carbon nanotube-assisted solid phase microextraction (CNT-SPME) fiber coupled with gas chromatography and mass spectrometry (GC/MS) to determine gasoline residues for fire debris analysis. The CNT-SPME fiber was prepared by a sequential coating of polydopamine, epoxy, and CNTs on a stainless-steel wire. The extraction capabilities of the CNT-SPME fiber for gasoline and its major aromatic groups (xylenes, alkylbenzenes, indanes, and naphthalenes) from neat and spiked samples were promising, with linear dynamic ranges of 0.4-12.5 and 3.1-12.5 µg 20-mL-1 headspace vial, respectively. The average relative standard deviations and accuracies for all concentration ranges in this work were lower than 15%. The relative recovery of the CNT-SPME fiber for all aromatic groups ranged from 28 ± 3% to 59 ± 2%. Additionally, the CNT-SPME fiber showed a higher selectivity for the naphthalenes group in gasoline, as indicated by the experimental outcome using a pulsed thermal desorption process of the extracts. We envision the nanomaterial-based SPME offers promising opportunities for extracting and detecting other ILs to support fire investigation.
Collapse
Affiliation(s)
- Ting-Yu Huang
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Blwers Blvd., Huntsville, TX 77340, United States
| | - Jorn Chi Chung Yu
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Blwers Blvd., Huntsville, TX 77340, United States.
| |
Collapse
|
6
|
Aghoutane Y, Brebu M, Moufid M, Ionescu R, Bouchikhi B, El Bari N. Detection of Counterfeit Perfumes by Using GC-MS Technique and Electronic Nose System Combined with Chemometric Tools. MICROMACHINES 2023; 14:524. [PMID: 36984931 PMCID: PMC10052770 DOI: 10.3390/mi14030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The Scientific Committee on Cosmetic and Non-Food Products has identified 26 compounds that may cause contact allergy in consumers when present in concentrations above certain legal thresholds in a product. Twenty-four of these compounds are volatiles and can be analyzed by gas chromatography-mass spectrometry (GC-MS) or electronic nose (e-nose) technologies. This manuscript first describes the use of the GC-MS approach to identify the main volatile compounds present in the original perfumes and their counterfeit samples. The second part of this work focusses on the ability of an e-nose system to discriminate between the original fragrances and their counterfeits. The analyses were carried out using the headspace of the aqueous solutions. GC-MS analysis revealed the identification of 10 allergens in the perfume samples, some of which were only found in the imitated fragrances. The e-nose system achieved a fair discrimination between most of the fragrances analyzed, with the counterfeit fragrances being clearly separated from the original perfumes. It is shown that associating the e-nose system to the appropriate classifier successfully solved the classification task. With Principal Component Analysis (PCA), the three first principal components represented 98.09% of the information in the database.
Collapse
Affiliation(s)
- Youssra Aghoutane
- Biosensors and Nanotechnology Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes 50070, Morocco
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes 50070, Morocco
| | - Mihai Brebu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Mohammed Moufid
- Biosensors and Nanotechnology Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes 50070, Morocco
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes 50070, Morocco
| | - Radu Ionescu
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Benachir Bouchikhi
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes 50070, Morocco
| | - Nezha El Bari
- Biosensors and Nanotechnology Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes 50070, Morocco
| |
Collapse
|
7
|
Zheng J, Kuang Y, Zhou S, Gong X, Ouyang G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal Chem 2023; 95:218-237. [PMID: 36625125 DOI: 10.1021/acs.analchem.2c03246] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
An Efficient Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry Method for the Analysis of Methyl Farnesoate Released in Growth Medium by Daphnia pulex. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238591. [PMID: 36500684 PMCID: PMC9736775 DOI: 10.3390/molecules27238591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Methyl farnesoate (MF), a juvenile hormone, can influence phenotypic traits and stimulates male production in daphnids. MF is produced endogenously in response to stressful conditions, but it is not known whether this hormone can also be released into the environment to mediate stress signaling. In the present study, for the first time, a reliable solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) method was developed and validated for the ultra-trace analysis of MF released in growth medium by Daphnia pulex maintained in presence of crowding w/o MK801, a putative upstream inhibitor of MF endogenous production. Two different clonal lineages, I and S clones, which differ in the sensitivity to the stimuli leading to male production, were also compared. A detection limit of 1.3 ng/L was achieved, along with good precision and trueness, thus enabling the quantitation of MF at ultra-trace level. The achieved results demonstrated the release of MF by both clones at the 20 ng/L level in control conditions, whereas a significant decrease in the presence of crowding was assessed. As expected, a further reduction was obtained in the presence of MK801. These findings strengthen the link between environmental stimuli and the MF signaling pathway. Daphnia pulex, by releasing the juvenile hormone MF in the medium, could regulate population dynamics by means of an autoregulatory feedback loop that controls the intra- and extra-individual-level release of MF produced by endogenous biosynthesis.
Collapse
|
9
|
Biopolymer composites for removal of toxic organic compounds in pharmaceutical effluents – a review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Metal-organic framework-based magnetic dispersive micro-solid-phase extraction for the gas chromatography–mass spectrometry determination of polycyclic aromatic compounds in water samples. J Chromatogr A 2022; 1671:463010. [DOI: 10.1016/j.chroma.2022.463010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022]
|
11
|
Homem V, Llompart M, Vila M, Ribeiro ARL, Garcia-Jares C, Ratola N, Celeiro M. Gone with the flow - Assessment of personal care products in Portuguese rivers. CHEMOSPHERE 2022; 293:133552. [PMID: 35007608 DOI: 10.1016/j.chemosphere.2022.133552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 05/08/2023]
Abstract
Although there are several works in the literature that study the presence of pharmaceuticals and personal care products (PPCPs) in surface waters, the vast majority focus their attention on pharmaceuticals and little information is found about personal care products (PCPs). Therefore, this study focused, for the first time, on the monitoring of five classes of PCPs - fragrance allergens, synthetic musks, phthalates, antioxidants, and ultraviolet-filters - in the surface water of four small-size typically pollution-impacted Portuguese rivers (Ave, Leça, Antuã and Cértima). A solid-phase microextraction (SPME) followed by gas chromatography - tandem mass spectrometry (GC-MS/MS) protocol was employed to analyse surface water samples collected in two seasonal campaigns - summer and winter (34 samples per season). A total of 22 out of 37 target PCPs were detected concomitantly at least once in one sampling point, being the most frequently detected α-isomethyl ionone, galaxolide, tonalide and cashmeran. The highest concentrations were confirmed for diethylhexyl phthalate (610.6 ng L-1), galaxolide (379.2 ng L-1), geraniol (290.9 ng L-1), linalool (271.2 ng L-1), benzophenone-3 (254.1 ng L-1) and citronellol (200.2 ng L-1). Leça River, traversing the more densely urban and industrialized area, had the highest levels of contaminants, which were also found in the sampling points located downstream of wastewater treatment plants discharge points. In general, higher levels were detected in summer, when the river flows are lower. Hazard quotients were determined and octocrylene, tonalide, and geraniol presented values above 1 in some sampling sites, which may indicate an ecotoxicological risk to the aquatic environment. The results presented suggest that these three PCPs should be included as priority pollutants in environmental monitoring schemes in surface waters, due to their high detection, persistence, and potential adverse effects.
Collapse
Affiliation(s)
- Vera Homem
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Maria Llompart
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Marlene Vila
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Ana R L Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - Carmen Garcia-Jares
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Nuno Ratola
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria Celeiro
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| |
Collapse
|