1
|
Du X, Zhang B, Lian Y, Jiang X, Li Y, Jiang D. A bulit-in self-calibration ratiometric self-powered photoelectrochemical sensor for high-precision and sensitive detection of microcystin-RR. Mikrochim Acta 2024; 191:379. [PMID: 38856817 DOI: 10.1007/s00604-024-06447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
A novel high-precision aptasensor of microcystin-RR (MC-RR) is developed based on a ratiometric self-powered photoelectrochemical platform. In detail, the defective MoS2/Ti3C2 nanocomposite with good photoelectric activity was designed to serve as the photoanode of the sensor for enhancing the signal and improving the detection sensitivity. In order to effectively eliminate external interferences, the key point of this ratiometric device is the introduction of the spatial-resolved technique, which includes the detection section and the reference section, generating reference signals and response signals, respectively. Moreover, output power was used as the detection signal, instead of the traditional photocurrent or photovoltage. Further, potassium persulfate was introduced as electron acceptor, which was beneficial for improving the electron transport efficiency, hindering electron-hole recombination, and significantly promoting the performance of the sensor. Finally, aptamer was adopted as recognition element to capture MC-RR molecules. The prepared sensor had a linear range from 10-12 to 10-6 M, and the detection limit was 5.6 × 10-13 M (S/N = 3). It has good precision, selectivity, and sensitivity, which shows great prospects in the on-site accurate analysis of samples with high energy output in the self-powered sensing field.
Collapse
Affiliation(s)
- Xiaojiao Du
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China.
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China.
| | - Bing Zhang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Yuebin Lian
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Xiaoyan Jiang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Yan Li
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Ding Jiang
- Jiangsu Key Laboratory of Materials Surface Science and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, P.R. China.
| |
Collapse
|
2
|
Mao Z, Zhao Y, Jia J, Xu Y, Li L, Zhou Y. Ultrasensitive Electrochemiluminescence Biosensor to Detect Ampicillin Resistance Gene (ARG AMP) Based on a Novel Near-Infrared Ruthenium Carbene Complex/TPrA/PEI Ternary ECL System. Anal Chem 2024; 96:934-942. [PMID: 38165813 DOI: 10.1021/acs.analchem.3c05367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The establishment of rapid target identification and analysis methods for antibiotic resistance genes (ARGs) is urgently needed. In this study, we unprecedently designed a target-catalyzed hairpin assembly (CHA) electrochemiluminescent (ECL) biosensor for the ultrasensitive detection of ampicillin resistance genes (ARGAMP) based on a novel, efficient near-infrared ruthenium carbene complex/TPrA/PEI ternary ECL system with low oxidation potential. The ternary NIR-ECL system illustrated in this work displayed double ECL intensity in comparison with their corresponding traditional binary ECL system. The as-prepared ECL biosensor illustrated in this work demonstrates highly selective and sensitive determination of ARGAMP from 1 fM to 1 nM and a low detection limit of 0.23 fM. Importantly, it also exhibits good accuracy and stabilities to identify ARGAMP in plasmid and bacterial genome DNA, which demonstrates its excellent reliability and great potential in detecting ARGAMP in real environmental samples.
Collapse
Affiliation(s)
- Ziwang Mao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yibo Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yaoyao Xu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
3
|
The role of doping strategy in nanoparticle-based electrochemiluminescence biosensing. Bioelectrochemistry 2022; 148:108249. [PMID: 36029761 DOI: 10.1016/j.bioelechem.2022.108249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
Abstract
Doping plays a crucial role in electrochemiluminescence (ECL) due to the followings: (1) Modulation of electronic structure, alteration of the surface state of nanoparticles (NPs), providing effective protection from the surrounding environment, thereby leading to ECL emitters with exceptional properties including tunable spectra, high luminescence efficiency, low excitation potential, and good stability. (2) Employment of doped NPs as promising coreactant alternatives due to the presence of functional groups such as amines induced by NP doping. (3) Serving as novel co-reaction accelerators (CRAs) for ECL through doping induced high catalytic properties. (4) Behaving as excellent carriers to load ECL emitters, recognition elements, and catalysts due to doping-induced larger surface area, higher conductivity and better biocompatibility of NPs. As a consequence, doped NPs have aroused broad interest and found wide applications in various ECL sensing platforms. In this review, the current promising improvements, concepts, and excellent applications of doped NPs for ECL biosensing are addressed. We aim to bring to light the physicochemical characteristics of various doped NPs that endow them with appealing ECL performance, leading to diverse applications in biosensing.
Collapse
|
4
|
Gao Y, Wang S, Wang B, Jiang Z, Fang T. Recent Progress in Phase Regulation, Functionalization, and Biosensing Applications of Polyphase MoS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202956. [PMID: 35908166 DOI: 10.1002/smll.202202956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The disulfide compounds of molybdenum (MoS2 ) are layered van der Waals materials that exhibit a rich array of polymorphic structures. MoS2 can be roughly divided into semiconductive phase and metallic phase according to the difference in electron filling state of the 4d orbital of Mo atom. The two phases show completely different properties, leading to their diverse applications in biosensors. But to some extent, they compensate for each other. This review first introduces the relationship between phase state and the chemical/physical structures and properties of MoS2 . Furthermore, the synthetic methods are summarized and the preparation strategies for metastable phases are highlighted. In addition, examples of electronic and chemical property designs of MoS2 by means of doping and surface modification are outlined. Finally, studies on biosensors based on MoS2 in recent years are presented and classified, and the roles of MoS2 with different phases are highlighted. This review offers references for the selection of materials to construct different types of biosensors based on MoS2 , and provides inspiration for sensing performance enhancement.
Collapse
Affiliation(s)
- Yan Gao
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Siyao Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Bin Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Zhao Jiang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Tao Fang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
5
|
Li X, Liao L, Jiang B, Yuan R, Xiang Y. Invader assay-induced catalytic assembly of multi-DNAzyme junctions for sensitive detection of single nucleotide polymorphisms. Anal Chim Acta 2022; 1224:340225. [DOI: 10.1016/j.aca.2022.340225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 01/07/2023]
|
6
|
Biosensors as diagnostic tools in clinical applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188726. [DOI: 10.1016/j.bbcan.2022.188726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
|
7
|
|
8
|
Yang XY, Wang YZ, Wang LL, Zhu JW, Zhao J, Zong HL, Chen CX. Bipolar electrode ratiometric electrochemiluminescence biosensing analysis based on boron nitride quantum dots and biological release system. Biosens Bioelectron 2021; 191:113393. [PMID: 34144471 DOI: 10.1016/j.bios.2021.113393] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/30/2022]
Abstract
In this article, we developed a novel ECL ratiometry on a closed bipolar electrode (BPE) for the sensitively and accurately detection of miRNA-21. High quantum yield and low toxicity BNQDs was synthesized and coated at BPE cathode as an ECL emitter, while the anode of BPE was calibrated via another ECL material, Ir(df-ppy)2(pic) (Firpic). The electron neutrality at both ends of the BPE electrically coupled the reactions on each pole of the BPE. Therefore, one electrochemical sensing reaction could be quantified at one end of the BPE. By the hybridization of target miRNA-21 and hairpin, the glucose blocked in MSNs by the hairpin was released and reacted with glucose oxidase (GOD) to generate H2O2, thereby reducing the ECL signal of the cathode BNQDs/K2S2O8 system and promoting ECL signal of anode Firpic/TPrA. Further, the G-quadruplex formed by unreacted hairpin bases consumed H2O2, which not only recovered the ECL of BNQDs, but also further improved the ECL emission of Firpic. Therefore, the concentration of miRNA-21 could be measured by the ECL ratio of BNQDs and Firpic. The data showed that the detection limit was 10-15 M (S/N = 3) with the linear range of 10-15 M to 10-9 M. The strategy of the BPE-ECL ratio method based on BNQDs showed a good prospect in clinical application.
Collapse
Affiliation(s)
- Xue-Yun Yang
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Yin-Zhu Wang
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China.
| | - Ling-Ling Wang
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Jia Wan Zhu
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Jie Zhao
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Hui-Long Zong
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Chuan-Xiang Chen
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China.
| |
Collapse
|