1
|
Zhang X, Chen X, Shi X, Li X, Yu HZ. Microscale quantitation of heavy metals by back-scattering interferometry in conjunction with photothermal effect using a single laser beam. Talanta 2024; 285:127390. [PMID: 39721133 DOI: 10.1016/j.talanta.2024.127390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
A microanalytical technique based on the photothermal effect in conjunction with back-scattering interferometry (BSI) using a single laser beam was developed for quantitative detection of heavy metals. After the chromogenic reaction of an analyte in a capillary tube, the photothermal effect induced by irradiation with the same laser beam leads to a change of the refractive index of the solution, which can be "quantified" using the BSI technique. For prove-of-concept, Cu(II) was chosen as the trial analyte, for which the solution changes to purplish through reacting with the chromogenic reagent; a single laser beam of 532 nm was adapted for both inducing the photothermal effect and realizing BSI detection. With as little as 1.0 μL solution, a limit of detection (LOD) of 0.10 mg/L for Cu(II) was achieved. In addition, the versatility of the technique was demonstrated by detecting other two heavy metal ions, Fe(II) and Cr(VI), with limits of detection of 0.06 mg/L and 0.04 mg/L, respectively. The demonstrated detection sensitivity, application versatility, and instrumentation simplicity of this new technique promises it as a practical tool for environmental monitoring and beyond.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, China.
| | - Xiaohong Chen
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, China
| | - Xiaofang Shi
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, China
| | - Xiaochun Li
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, China.
| | - Hua-Zhong Yu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
2
|
Guo J, Wu J, Yang J, He J. A colorimetric and electrochemical dual-mode system for identifying and detecting varied Cr species based on fungus-like porous CoS nanosensor. Talanta 2024; 285:127379. [PMID: 39681056 DOI: 10.1016/j.talanta.2024.127379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/24/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
The differentiation of valence states plays a crucial role in determining the toxicity of chromium (Cr) in environmental samples. In this work, two modes of colorimetric and electrochemical analytical methods based on a fungus like porous CoS (FP CoS) nanosensor were developed for rapid, specific, and portable detection trace/ultra-trace chromium species (Cr(VI) and Cr(III)). The FP CoS exhibited peroxidase activity as a nanozyme for the colorimetric detection of Cr(VI), catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to a blue oxidation product (oxTMB) in the presence of Cr(VI) instead of unstable H2O2 as an oxidizer at room temperature over existing methods. Based on the promotion of colorimetric reaction by increasing in Cr(VI) concentration, an effective colorimetric detection of Cr(VI) method was established with a detection limit (LOD) low to 3.93 μg L-1 and unique selectivity for Cr(VI) over 21 interfering ions (containing 15 metal ions and 6 anions). Innovatively, Cr(VI) could be reduced to Cr(III) without TMB, then selectively enriched by redox reaction with FP CoS. Hence, Cr (III) can be selectively and effectively enriched by FP CoS applying voltage, and then detected using cyclic voltammetry, with a lower LOD of 0.116 μg L-1 and high sensitivity ignoring background interferences. By integrating the dual-mode detection channel, the FP CoS nanosensor offers a convenient and flexible method for simultaneously determining Cr(VI), Cr(III), and total chromium in diverse samples.
Collapse
Affiliation(s)
- Jianrong Guo
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Juan Wu
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
3
|
Srivastava R, Singh Y, White JC, Dhankher OP. Mitigating toxic metals contamination in foods: Bridging knowledge gaps for addressing food safety. Trends Food Sci Technol 2024; 153:104725. [PMID: 39665028 PMCID: PMC11634057 DOI: 10.1016/j.tifs.2024.104725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Background Reducing exposure to harmful substances in food is highly desired, especially for infants, young children, and pregnant women. A workshop focused on understanding and reducing toxic metal contamination in food was conducted involving leading scientists, educators, practitioners, and key stakeholders in conjunction with the USDA National Institute of Food and Agriculture. Scope and approach The goal of this review and the workshop was to advance the current knowledge of major toxic metals concerning food safety, viz. arsenic (As), lead (Pb), cadmium (Cd), mercury (Hg), and chromium (Cr), preventive measures, identify critical knowledge gaps, and the need for research, extension, and education. Being a part of the "Closer to Zero (C2Z)" initiative of the USDA, FDA, and other federal agencies, the workshop adopted a "One Health" approach to mitigate dietary exposure and environmental pollution of hazardous elements. Key findings and conclusions The experts discussed the accumulation of toxic metals in food crops and drinking water in relation to soil biogeochemistry, plant uptake, and multidisciplinary factors such as food processing, detection, regulatory standards, etc. To forward food safety, this workshop critically examined toxic metals contamination, exposure and toxicity along the farm-to-fork-to-human continuum, research gaps, prevailing regulations, and sustainable remediation approaches, and offered significant recommendations. This review paper provides perspective on key findings of the workshop relative to addressing this important aspect of food safety, emphasizing interdisciplinary research that can effectively investigate and understand the complex and dynamic relationships between soil biogeochemistry, the microbiome, plant tolerance and accumulation strategies, uniform standards for acceptable and safe toxic element levels in food and water, and raising public awareness. This article also provides a foundation for decision-making regarding toxic metal fate and effects, including risk management strategies, in the face of modern industrialization and a changing climate.
Collapse
Affiliation(s)
- Richa Srivastava
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yogita Singh
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jason C. White
- The Connecticut Agricultural Experimental Station, New Haven, CT, 06511, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
4
|
Si L, Wu Q, Jin Y, Wang Z. Research progress in the detection of trace heavy metal ions in food samples. Front Chem 2024; 12:1423666. [PMID: 38867762 PMCID: PMC11168114 DOI: 10.3389/fchem.2024.1423666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Food safety is the basis for ensuring human survival and development. The threat of heavy metal ions to food safety has become a social concern with the rapid growth of the economy and the accompanying environmental pollution. Some heavy metal ions are highly toxic even at trace levels and pose significant health risks to humans. Therefore, ultrasensitive detection of heavy metal ions in food samples is important. In this mini-review, recent advances in the analytical methods based on nanomaterials for detecting trace heavy metal ions in food samples are summarized in three categories: electrochemical, colorimetric, and fluorescent methods. We present the features and sensing mechanisms of these three methods, along with typical examples to illustrate their application in the detection of heavy metal ions in foods. This mini-review ends with a discussion of current challenges and future prospects of these approaches for sensing heavy metal ions. The review will help readers understand the principles of these methods, thereby promoting the development of new analytical methods for the detection of heavy metal ions in food samples.
Collapse
Affiliation(s)
| | | | - Yulong Jin
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
5
|
Li Y, Mu Z, Yuan Y, Zhou J, Bai L, Qing M. An enzymatic activity regulation-based clusterzyme sensor array for high-throughput identification of heavy metal ions. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131501. [PMID: 37119573 DOI: 10.1016/j.jhazmat.2023.131501] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
The accurate identification and sensitive quantification of heavy metal ions are of great significance, considering that pose a serious threat to environment and human health. Most array-based sensing platforms, to date, utilize nanozymes as sensing elements, but few studies have explored the application of the peroxidase-like activity of clusterzymes in identification of multiple analytes. Herein, for the first time, we developed a clusterzyme sensor array utilizing gold nanoclusters (AuNCs) as sensing elements for five heavy metal ions identification including Hg2+, Pb2+, Cu2+, Cd2+ and Co2+. The heavy metal ions can differentially regulate the peroxidase-like activity of AuNCs, and that can be converted into colorimetric signals with 3,3',5,5'-tetramethylbenzidine (TMB) as the chromogenic substrate. Subsequently, the generated composite responses can be interpreted by combining pattern recognition algorithms. The developed clusterzyme sensor array can identify five heavy metal ions at concentrations as low as 0.5 μM and their multi-component mixtures. Especially, we demonstrated the successful identification of multiple heavy metal ions in tap water and traditional Chinese medicine, with an accuracy of 100% in blind test. This study provided a simple and effective method for identification and quantification of heavy metal ions, rendering a promising technique for environmental monitoring and drug safety assurance.
Collapse
Affiliation(s)
- Yueyuan Li
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhaode Mu
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yonghua Yuan
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Min Qing
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
6
|
Al-Kassawneh M, Sadiq Z, Jahanshahi-Anbuhi S. User-friendly and ultra-stable all-inclusive gold tablets for cysteamine detection. RSC Adv 2023; 13:19638-19650. [PMID: 37397283 PMCID: PMC10308203 DOI: 10.1039/d3ra03073c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
To date, a range of nanozymes has been reported for their enzyme-mimicking catalytic activity such as solution-based sensors. However, in remote areas, the need for portable, cost-effective, and one-pot prepared sensors is obvious. In this study, we report the development of a highly stable and sensitive gold tablet-based sensor for cysteamine quantification in human serum samples. The sensor is produced in two steps: synthesis of a pullulan-stabilized gold nanoparticle solution (pAuNP-Solution) using a pullulan polymer as a reducing, stabilizing, and encapsulating agent and then, casting the pAuNP-Solution into a pullulan gold nanoparticle tablet (pAuNP-Tablet) by a pipetting method. The tablet was characterized by UV-vis, DLS, FTIR, TEM, and AFM analyses. The pAuNP-tablet exhibited a high peroxidase-mimetic activity via a TMB-H2O2 system. The presence of cysteamine in the system introduced two types of inhibition which were dependent on the cysteamine concentration. By determining Michaelis-Menten's kinetic parameters, we gained mechanistic insights into the catalytic inhibition process. Based on the catalytic inhibition capability of cysteamine, the limit of detection (LoD) was calculated to be 69.04 and 82.9 μM in buffer and human serum samples, respectively. Finally, real human serum samples were tested, demonstrating the applicability of the pAuNP-Tablet for real-world applications. The % R values in human serum samples were in the range of 91-105% with % RSD less than 2% for all replicas. The stability tests over 16 months revealed the ultra-stable properties of the pAuNP-Tablet. Overall, with a simple fabrication method and a novel employed technique, this study contributes to the advancement of tablet-based sensors and helps in cysteamine detection in clinical settings.
Collapse
Affiliation(s)
- Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University Montréal Québec Canada
| | - Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University Montréal Québec Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University Montréal Québec Canada
| |
Collapse
|
7
|
Yang QY, Wan CQ, Wang YX, Shen XF, Pang YH. Bismuth-based metal-organic framework peroxidase-mimic nanozyme: Preparation and mechanism for colorimetric-converted ultra-trace electrochemical sensing of chromium ion. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131148. [PMID: 36889075 DOI: 10.1016/j.jhazmat.2023.131148] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
A colorimetric-electrochemical dual-mode analytical method based on bismuth metal-organic framework nanozyme was developed for label-free and trace/ultra-trace Cr6+ detection. 3D ball-flower shaped bismuth oxide formate (BiOCOOH) was used as the precursor and template to facilely construct the metal-organic framework nanozyme BiO-BDC-NH2, which possesses intrinsic peroxidase-mimic activity to effectively catalyze the colorless 3,3',5,5'-tetramethylbenzidine into blue oxidation products in the presence of hydrogen peroxide. Based on Cr6+ to promote the peroxide-mimic activity of BiO-BDC-NH2 nanozyme, a colorimetric method for Cr6+ detection was developed with the detection limit of 0.44 ng mL-1. Cr6+ can be electrochemically reduced to Cr3+ that would specifically inhibit the peroxidase-mimic activity of BiO-BDC-NH2 nanozyme. Thus, the colorimetric system for Cr6+ detection was converted into a low-toxic and signal-off electrochemical sensor. The electrochemical model showed upgraded sensitivity and a lower detection limit of 9.00 pg mL-1. The dual-model method was developed for selective appropriate sensing instruments in different detection scenarios, which can provide built-in correction for environmental effects, as well as the development and utilization of dual-signal sensing platforms for trace to ultra-trace Cr6+ rapid assay.
Collapse
Affiliation(s)
- Qiu-Yu Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chao-Qun Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu-Xin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Hua F, Pan F, Yang J, Yan Y, Huang X, Yuan Y, Nie J, Wang H, Zhang Y. Quantitative colorimetric sensing of heavy metal ions via analyte-promoted growth of Au nanoparticles with timer or smartphone readout. Anal Bioanal Chem 2023; 415:2705-2713. [PMID: 37017723 DOI: 10.1007/s00216-023-04669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/06/2023]
Abstract
This work describes two new colorimetric nanosensors for label-free, equipment-free quantitative detection of nanomolar copper (II) (Cu2+) and mercury (II) (Hg2+) ions. Both are based on the analyte-promoted growth of Au nanoparticles (AuNPs) from the reduction of chloroauric acid by 4-morpholineethanesulfonic acid. For the Cu2+ nanosensor, the analyte can accelerate such a redox system to rapidly form a red solution containing dispersed, uniform, spherical AuNPs that is related to these particles' surface plasmon resonance property. For the Hg2+ nanosensor, on the other hand, a blue mixture consisting of aggregated, ill-defined AuNPs with various sizes can be created, showing a significantly enhanced Tyndall effect (TE) signal (in comparison with that produced in the red solution of AuNPs). By using a timer and a smartphone to quantitatively measure the time of producing the red solution and the TE intensity (i.e., the average gray value of the corresponding image) of the blue mixture, respectively, the developed nanosensors are well demonstrated to achieve linear ranges of 6.4 nM to 100 μM and 6.1 nM to 1.56 μM for Cu2+ and Hg2+, respectively, with detection limits down to 3.5 and 0.1 nM, respectively. The acceptable recovery results obtained from the analysis of the two analytes in the complex real water samples including drinking water, tap water, and pond water ranged from 90.43 to 111.56%.
Collapse
Affiliation(s)
- Fei Hua
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Fenglan Pan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Juanhua Yang
- Chinese Academy of Inspection & Quarantine Greater Bay Area, Zhongshan, 528400, China
| | - Yongkang Yan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Xueer Huang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| | - Hua Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, 313000, China.
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
9
|
Qiu J, Zeng D, Lin Y, Ye W, Chen C, Xu Z, Hu G, Liu Y. Carbon-polymer dot-based UV absorption and fluorescence performances for heavy metal ion detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121913. [PMID: 36198239 DOI: 10.1016/j.saa.2022.121913] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
In previous reports, carbon dots (CDs) were customarily used as fluorescent probes to detect heavy metal ions. However, scientists neglected to take advantage of the excellent UV absorption properties of CDs to detect heavy metal ions. Herein, we synthesized nitrogen-containing carbon polymer dots (N-CPDs) for the determination of Co2+ ions in water samples by a one-step hydrothermal method using l-histidine and ethylene imine polymer as raw materials. The N-CPDs were characterized by ultraviolet-visible spectrum (UV-vis), infrared spectrum (FT-IR), X-ray photoelectron spectrum (XPS) and transmission electron microscopy (TEM) techniques. They possess superior full-band UV absorption performance and the surface is rich in multifunctional groups such as -COOH, -CN-, -OH, etc. When Co2+ was added to N-CPDs solution, the color of the solution rapidly changed from colorless to yellow-brown, which was visible to the naked eye. The UV absorption intensity of N-CPDs changed, and the fluorescence was instantly quenched, due to the formation of chelate between Co2+ and N-CPDs, and the FRET process occurred. The detection of Co2+ showed good linearity for both fluorescence and UV absorption spectroscopy modes in the range of 0-200 μM, and the limit of detection were 1.0023 μM and 0.75 μM, respectively. These two methods have the advantages of simple operation, remarkable selectivity and small sample size, which can be applied to the field detection of Co2+ in water samples. It is possible to develop the UV absorption properties of CDs to detect the ions.
Collapse
Affiliation(s)
- Jiemin Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Danhong Zeng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yichun Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Weihao Ye
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Congcong Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Guangqi Hu
- College of Photoelectric Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China.
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Sadiq Z, Safiabadi Tali SH, Hajimiri H, Al-Kassawneh M, Jahanshahi-Anbuhi S. Gold Nanoparticles-Based Colorimetric Assays for Environmental Monitoring and Food Safety Evaluation. Crit Rev Anal Chem 2023; 54:2209-2244. [PMID: 36629748 DOI: 10.1080/10408347.2022.2162331] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent years have witnessed an exponential increase in the research on gold nanoparticles (AuNPs)-based colorimetric sensors to revolutionize point-of-use sensing devices. Hence, this review is compiled focused on current progress in the design and performance parameters of AuNPs-based sensors. The review begins with the characteristics of AuNPs, followed by a brief explanation of synthesis and functionalization methods. Then, the mechanisms of AuNPs-based sensors are comprehensively explained in two broad categories based on the surface plasmon resonance (SPR) characteristics of AuNPs and their peroxidase-like catalytic properties (nanozyme). SPR-based colorimetric sensors further categorize into aggregation, anti-aggregation, etching, growth-mediated, and accumulation-based methods depending on their sensing mechanisms. On the other hand, peroxidase activity-based colorimetric sensors are divided into two methods based on the expression or inhibition of peroxidase-like activity. Next, the analytes in environmental and food samples are classified as inorganic, organic, and biological pollutants, and recent progress in detection of these analytes are reviewed in detail. Finally, conclusions are provided, and future directions are highlighted. Improving the sensitivity, reproducibility, multiplexing capabilities, and cost-effectiveness for colorimetric detection of various analytes in environment and food matrices will have significant impact on fast testing of hazardous substances, hence reducing the pollution load in environment as well as rendering food contamination to ensure food safety.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Hasti Hajimiri
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
11
|
Hao N, Zuo Y, Dai Z, Xiong M, Wei J, Qian J, Wang K. High-Throughput Detection of Multiple Contaminants Based on Portable Photoelectrochromic Sensor Chip. Anal Chem 2021; 93:14053-14058. [PMID: 34645270 DOI: 10.1021/acs.analchem.1c03868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the increasing concerns about the environment and food safety, it is necessary to develop portable, low-cost, and high-throughput biosensors for the simultaneous detection of multiple contaminates. However, traditional photoelectrochemical (PEC) biosensors lack the ability of multiplexed assays due to the inherent mechanism limitation. Also, specialized instruments are necessary for most PEC biosensors. In this work, a portable high-throughput sensor chip has been successfully developed. By introducing electrochromic materials, the detection is based on color change instead of electric signals, which reduces the limitation of instruments. This designed sensor chip is composed of three parallel sensing channels fabricated by laser etching. Each channel is modified with TiO2/3D-g-C3N4 composites with excellent PEC activity and electrochromic material Prussian blue (PB). Under light illumination, photoinduced electrons generated by TiO2/3D-g-C3N4 are injected into PB, and blue PB is reduced to colorless Prussian white. Three organic contaminates, ochratoxin A, lincomycin, and edifenphos, can be simultaneously detected because the binding of these molecules with aptamers affects the electron transfer and the corresponding color changes. This portable and high-throughput sensor chip provides a convenient choice for multiplexed assays with good sensitivity and accuracy.
Collapse
Affiliation(s)
- Nan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yanli Zuo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhen Dai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Meng Xiong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, P. R. China
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|