1
|
Cioates Negut C, Ilie-Mihai RM, Stefan-van Staden RI. Determination of Matrix Metalloproteinase 2 in Biological Samples Using a 3D Stochastic Microsensor Based on Graphene Oxide/AuNanoparticles/(Z)-N-(pyridin-4-yl-methyl) Octadec-9-enamide. Int J Mol Sci 2024; 25:6720. [PMID: 38928425 PMCID: PMC11203526 DOI: 10.3390/ijms25126720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The levels of the MMPs in the biological samples of confirmed patients with gastric cancer are significantly elevated compared to those found in healthy people. Therefore, a novel 3D stochastic microsensor based on graphene oxide, modified with gold nanoparticles and (Z)-N-(pyridin-4-yl-methyl) octadec-9-enamide (namely N2-AuNP/GO), was designed for the determination of MMP-2 in biological samples, and validated for the screening tests of biological samples in order to be used for the early diagnosis of gastric cancer. The proposed sensor presents a low limit of quantification (1.00 × 10-22 g mL-1), high sensitivity (1.84 × 107 s-1 g-1 mL), and a wide working concentration range (1.00 × 10-22-1.00 × 10-7 g mL-1). Recovery values higher than 99.15% were recorded for the assay of MMP-2 in whole blood, gastric tissue tumors, saliva, and urine samples.
Collapse
Affiliation(s)
| | - Ruxandra-Maria Ilie-Mihai
- Laboratory of Electrochemistry and PATLAB, National Institute for Research and Development in Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021 Bucharest, Romania;
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute for Research and Development in Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021 Bucharest, Romania;
| |
Collapse
|
2
|
Chen T, Zhang S, Zhu C, Liu C, Liu X, Hu S, Zheng D, Zhang J. Application of surfactants in the electrochemical sensing and biosensing of biomolecules and drug molecules. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3607-3619. [PMID: 38805018 DOI: 10.1039/d4ay00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Realizing sensitive and efficient detection of biomolecules and drug molecules is of great significance. Among the detection methods that have been proposed, electrochemical sensing is favored for its outstanding advantages such as simple operation, low cost, fast response and high sensitivity. The unique structure and properties of surfactants have led to a wide range of applications in the field of electrochemical sensors and biosensors for biomolecules and drug molecules. Through the comparative analysis of reported works, this paper summarizes the application modes of surfactants in electrochemical sensors and biosensors for biomolecules and drug molecules, explores the possible electrocatalytic mechanism of their action, and looks forward to the development trend of their applications. This review is expected to provide some new ideas for subsequent related research work.
Collapse
Affiliation(s)
- Tingfei Chen
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
| | - Shunrun Zhang
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
| | - Chunnan Zhu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Brain Cognitive Science(State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Chao Liu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Brain Cognitive Science(State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Xiaojun Liu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Brain Cognitive Science(State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Shengshui Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Dongyun Zheng
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Brain Cognitive Science(State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Jichao Zhang
- Wuhan Huadingcheng New Materials Co., Ltd, Wuhan 430205, China.
| |
Collapse
|
3
|
Hu J, Liu F, Chen Y, Fu J, Ju H. Signal-On Mass Spectrometric Biosensing of Multiplex Matrix Metalloproteinases with a Phospholipid-Structured Mass-Encoded Microplate. Anal Chem 2023. [PMID: 37235973 DOI: 10.1021/acs.analchem.3c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The detection of matrix metalloproteinases (MMPs) is of great importance for diagnosis and staging of cancer. This work proposed a signal-on mass spectrometric biosensing strategy with a phospholipid-structured mass-encoded microplate for assessment of multiplex MMP activities. The designed substrate and internal standard peptides were subsequently labeled with the reagents of isobaric tags for relative and absolute quantification (iTRAQ), and DSPE-PEG(2000)maleimide was embedded on the surface of a 96-well glass bottom plate to fabricate the phospholipid-structured mass-encoded microplate, which offered a simulated environment of the extracellular space for enzyme reactions between MMPs and the substrates. The strategy achieved multiplex MMP activity assays by dropping the sample in the well for enzyme cleavages, followed by adding trypsin to release the coding regions for ultrahigh performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) analysis. The peak area ratios of released coding regions and their respective internal standard (IS) peptides exhibited satisfied linear ranges of 0.05-50, 0.1-250, and 0.1-100 ng mL-1 with the detection limits of 0.017, 0.046, and 0.032 ng mL-1 for MMP-2, MMP-7, and MMP-3, respectively. The proposed strategy demonstrated good practicability in inhibition analysis and detections of multiplex MMP activities in serum samples. It is of great potential for clinical applications and can be expanded for multiplex enzyme assays.
Collapse
Affiliation(s)
- Junjie Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Fu
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Gong J, Tang H, Luo X, Zhou H, Lin X, Wang K, Yan F, Xi F, Liu J. Vertically Ordered Mesoporous Silica-Nanochannel Film-Equipped Three-Dimensional Macroporous Graphene as Sensitive Electrochemiluminescence Platform. Front Chem 2021; 9:770512. [PMID: 34881226 PMCID: PMC8645553 DOI: 10.3389/fchem.2021.770512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
Three-dimensional (3D) electrochemiluminescence (ECL) platform with high sensitivity and good anti-fouling is highly desirable for direct and sensitive analysis of complex samples. Herein, a novel ECL-sensing platform is demonstrated based on the equipment of vertically ordered mesoporous silica-nanochannel films (VMSF) on monolithic and macroporous 3D graphene (3DG). Through electrografting of 3-aminopropyltriethoxysilane (APTES) onto 3DG as molecular glue, VMSF grown by electrochemically assisted self-assembly (EASA) method fully covers 3DG surface and displays high stability. The developed VMSF/APTES/3DG sensor exhibits highly sensitized ECL response of tris(2,2'-bipyridyl) ruthenium (Ru (bpy)3 2+) taking advantages of the unique characteristics of 3DG (high active area and conductivity) and VMSF nanochannels (strong electrostatic enrichment). The VMSF/APTES/3DG sensor is applied to sensitively detect an important environmental pollutant (4-chlorophenol, with limit of detection or LOD of 30.3 nM) in term of its quenching effect (ECL signal-off mode) toward ECL of Ru (bpy)3 2+/tri-n-propylamine (TPrA). The VMSF/APTES/3DG sensor can also sensitively detect the most effective antihistamines chlorpheniramine (with LOD of 430 nM) using ECL signal-on mode because it acts as co-reactant to promote the ECL of Ru (bpy)3 2+. Combined with the excellent antifouling ability of VMSF, the sensor can also realize the analysis of actual environmental (lake water) and pharmaceutical (pharmacy tablet) samples. The proposed 3D ECL sensor may open new avenues to develop highly sensitive ECL-sensing platform.
Collapse
Affiliation(s)
- Jiawei Gong
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongliang Tang
- Affiliated Fangchenggang Hospital, Guangxi University of Chinese Medicine, Fangchenggang, China
| | - Xuan Luo
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huaxu Zhou
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xueting Lin
- The First Clinical Faculty of Guangxi University of Chinese Medicine, Nanning, China
| | - Kailong Wang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Fei Yan
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fengna Xi
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiyang Liu
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|