1
|
Dou M, Wang S, Li W, Li Q, Xu J, Li J. High-performance molecularly imprinted polymers grafted magnetic photonic crystal microspheres for selective enrichment of Ochratoxin A. J Chromatogr A 2023; 1695:463932. [PMID: 36972663 DOI: 10.1016/j.chroma.2023.463932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Development of selective enrichment materials for the accurate analysis of ochratoxin a (OTA) in environmental and food samples is an effective way to protect human health. Here, a molecularly imprinted polymer (MIP) known as plastic antibody was synthesized onto the magnetic inverse opal photonic crystal microsphere (MIPCM) using a low-cost dummy template imprinting strategy targeting OTA. The MIP@MIPCM exhibited ultrahigh selectivity with an imprinting factor of 130, high specificity with cross-reactivity factors of 3.3-10.5, and large adsorption capacity of 60.5 μg/mg. Such MIP@MIPCM was used for selective capture of OTA in real samples which was quantified in combination with high-performance liquid chromatography, giving a wide linear detection range of 5-20,000 ng/mL, a detection limit of 0.675 ng/mL, and good recovery rates of 84-116%. Moreover, the MIP@MIPCM can be produced simply and rapidly and is very stable under different environmental conditions and easy to store and transport, so it is an ideal substitute of biological antibody modified materials for the selective enrichment of OTA in real samples.
Collapse
Affiliation(s)
- Menghua Dou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siwei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- Medical Imaging Center the First Affiliated Hospital, Jinan University, Guangdong 510627, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Ma X, Lin H, Yong Y, Ju X, Li Y, Liu X, Yu Z, Wujin C, She Y, Zhang J, Abd El-Aty AM. Molecularly imprinted polymer-specific solid-phase extraction for the determination of 4-hydroxy-2(3H)benzoxazolone isolated from Acanthus ilicifolius Linnaeus using high-performance liquid chromatography-tandem mass spectrometry. Front Nutr 2022; 9:950044. [PMID: 36337639 PMCID: PMC9634063 DOI: 10.3389/fnut.2022.950044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
The minor constituent found in Acanthus ilicifolius Linnaeus, 4-hydroxy-2 (3H) benzoxazolone alkaloid (HBOA), has a range of versatile applications. Herein, a quick and straightforward method for extracting HBOA from A. ilicifolius Linnaeus was proposed. HBOA was used as a template, whereas methacrylic acid, ethylene glycol dimethacrylate, and acetonitrile were used as functional monomers, cross-linkers, and porogens, respectively. Molecularly imprinted polymers (MIPs) were synthesized by precipitation polymerization, and their adsorption isotherms, dynamics, and selective binding ability were characterized and analyzed. The results showed that the adsorption amount of the template was 90.18 mg/g. The MIPs were used as solid-phase extraction fillers and actual sample extraction columns, with a linear range of 0–100 μg/L, average recovery of 78.50–101.12%, and a relative standard deviation of 1.20–3.26%. The HBOA concentrations in the roots, stems, and leaves were 1,226, 557, and 205 μg/g, respectively. In addition, MIP–SPE was successfully used in isolating and purifying HBOA from different parts of A. ilicifolius Linnaeus, indicating its effectiveness in extracting and determining HBOA in other herbs.
Collapse
Affiliation(s)
- Xingbin Ma
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
| | - Hongling Lin
- Zhanjiang Experimental Station, Southern-Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Lab of Veterinary Pharmaceutics Development, Ministry of Agriculture/Key Lab of New Animal Drug Project, Gansu Province/Lanzhou Institute of Husbandry Science and Veterinary Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Hongling Lin
| | - Yanhong Yong
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
| | - Xianghong Ju
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
| | - Youquan Li
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
| | - Zhichao Yu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
| | - Cuomu Wujin
- Institute of Veterinary and Animal Husbandry, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yongxin She
- Institute of Quality Standards and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Yongxin She
| | - Jiyu Zhang
- Key Lab of Veterinary Pharmaceutics Development, Ministry of Agriculture/Key Lab of New Animal Drug Project, Gansu Province/Lanzhou Institute of Husbandry Science and Veterinary Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Veterinary and Animal Husbandry, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
3
|
Nechvátalová M, Urban J. Current trends in the development of polymer-based monolithic stationary phases. ANALYTICAL SCIENCE ADVANCES 2022; 3:154-164. [PMID: 38715639 PMCID: PMC10989626 DOI: 10.1002/ansa.202100065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2024]
Abstract
This review focuses on the development and applications of organic polymer monoliths, with special attention to the literature published in 2021. The latest protocols in the preparation of polymer monoliths are discussed. In particular, tailored surface modification using nanomaterials, the development of chiral stationary phases and development of stationary phases for capillary electrochromatography are reviewed. Furthermore, the optimization of pore forming solvents composition is also discussed. Finally, the use of monolithic stationary phases in sample treatment using solid-phase extraction and enrichment methods, molecularly imprinted polymers and enzymatic reactors is mentioned.
Collapse
Affiliation(s)
| | - Jiří Urban
- Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
4
|
Martín-Esteban A. Green molecularly imprinted polymers for sustainable sample preparation. J Sep Sci 2021; 45:233-245. [PMID: 34562063 DOI: 10.1002/jssc.202100581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022]
Abstract
The use of molecularly imprinted polymers in sample preparation as selective sorbent materials has received great attention during the last years leading to analytical methods with unprecedented selectivity. However, with the progressive implementation of Green Analytical Chemistry principles, it is necessary to critically review the greenness of synthesis and further use of molecularly imprinted polymers in sample preparation. Accordingly, in the present review, the different steps and strategies for the preparation of molecularly imprinted polymers, the used reagents, as well as their incorporation to microextraction techniques are reviewed from a green perspective and recent alternatives to make the use of molecularly imprinted polymers more sustainable are provided.
Collapse
Affiliation(s)
- Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| |
Collapse
|