1
|
Millán-Santiago J, Calero-Cañuelo C, Lucena R, Cárdenas S. Coupling microextraction techniques with substrate spray mass spectrometry, towards a faster analysis of biological samples. J Pharm Biomed Anal 2025; 253:116535. [PMID: 39454545 DOI: 10.1016/j.jpba.2024.116535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Direct coupling sample preparation with mass spectrometry has risen as a reliable analytical strategy in bioanalysis as it provides a high sample throughput. This approach avoids an exhaustive separation step, thus being cost-effective compared to the traditional analytical workflow. The selectivity and sensitivity levels rely on the mass spectrometric analysis and the appropriate selection of the sample preparation. Miniaturized extraction techniques have demonstrated particular utility in this coupling thanks to their ability to pre-concentrate the target analytes while removing many of the matrix components. This article reviews the main developments in combining microextraction techniques with mass spectrometry based on electrospray ionization, a consolidated ionization technique in bioanalysis. The article aims to provide an overview of the potential of these techniques by describing the most significant examples. The different approaches are classified according to the materials or devices used to perform the extraction and analysis.
Collapse
Affiliation(s)
- Jaime Millán-Santiago
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba E-14071, Spain
| | - Carlos Calero-Cañuelo
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba E-14071, Spain
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba E-14071, Spain.
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba E-14071, Spain
| |
Collapse
|
2
|
Millán-Santiago J, Lucena R, Cárdenas S. Nylon 6-cellulose composite hosted in a hypodermic needle: Biofluid extraction and analysis by ambient mass spectrometry in a single device. J Pharm Anal 2023; 13:1346-1352. [PMID: 38174121 PMCID: PMC10759252 DOI: 10.1016/j.jpha.2023.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/28/2023] [Accepted: 06/27/2023] [Indexed: 01/05/2024] Open
Abstract
This study proposes a hypodermic needle (HN) as a sorbent holder and an electrospray (ESI) emitter, thus combining extraction and analysis in a single device. A novel nylon 6-cellulose (N6-Cel) composite sorbent is proposed to extract methadone from oral fluid samples. The cellulosic substrate provides the composite with high porosity, permitting the flow-through of the sample, while the polyamide contributes to the extraction of the analyte. The low price of the devices (considering the holder and the sorbent) contributes to the affordability of the method, and their small size allows easy transportation, opening the door to on-site extractions. Under the optimum conditions, the analyte can be determined by high-resolution ambient ionization mass spectrometry at a limit of detection (LOD) as low as 0.3 μg/L and precision (expressed as relative standard deviation, RSD) better than 9.3%. The trueness, expressed as relative recovery (RR), ranged from 90% to 109%. As high-resolution mass spectrometers are not available in many laboratories, the method was also adapted to low-resolution spectrometers. In this sense, the direct infusion of the eluates in a triple quadrupole-mass spectrometry provided an LOD of 2.2 μg/L. The RSD was better than 5.3%, and the RR ranged from 96% to 121%.
Collapse
Affiliation(s)
- Jaime Millán-Santiago
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Analytical Chemistry Department, Chemical Institute for Energy and Environment (IQUEMA), University of Cordoba, E-14071, Cordoba, Spain
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Analytical Chemistry Department, Chemical Institute for Energy and Environment (IQUEMA), University of Cordoba, E-14071, Cordoba, Spain
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Analytical Chemistry Department, Chemical Institute for Energy and Environment (IQUEMA), University of Cordoba, E-14071, Cordoba, Spain
| |
Collapse
|
3
|
Wang R, Tong W, Wu Y, Chen Z, Lin Z, Cai Z. Facile synthesis of hollow microtubular COF as enrichment probe for quantitative detection of ultratrace quinones in mice plasma with APGC-MS/MS. Mikrochim Acta 2023; 190:72. [PMID: 36695957 DOI: 10.1007/s00604-023-05639-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023]
Abstract
A hollow microtubular covalent organic framework (denoted as TatDha-COF) was synthesized by solvothermal method for the enrichment and determination of quinones. The TatDha-COF showed large specific surface area (2057 m2 g-1), good crystal structure, ordered pore size distribution (2.3 nm), stable chemical properties and good reusability. Accordingly, a simple and efficient method based on dispersive solid-phase extraction (d-SPE) and atmospheric pressure gas chromatography tandem mass spectrometry (APGC-MS/MS) was developed for the determination of quinones in complex samples. The established method demonstrated a wide liner range, good linearity (r>0.9990), high enrichment factors (EFs, 24-69-folds) and low detection limits (LODs, 0.200-30.0 pg L-1, S/N≥3). On this basis, the suggested method was successfully applied to sensitively detect the eight ultratrace quinones in mice plasma. Overall, the established method has provided a powerful tool for the enrichment and detection of ultratrace quinones in complex samples, presenting the promising application of TatDha-COF in sample pretreatment.
Collapse
Affiliation(s)
- Ran Wang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wei Tong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yijing Wu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhuling Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
4
|
Meng X, Liu Y, Huo M, Yang S, Zhang X, Tian L, Li W, Wei J, Wang Z, Zhou Z, Chen Y, Wang Z, Abliz Z. Mapping of Fatty Aldehydes in the Diabetic Rat Brain Using On-Tissue Chemical Derivatization and Air-Flow-Assisted Desorption Electrospray Ionization-Mass Spectrometry Imaging. J Proteome Res 2023; 22:36-46. [PMID: 36564034 DOI: 10.1021/acs.jproteome.2c00445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fatty aldehydes (FALs) are involved in various biological processes, and their abnormal metabolism is related to the occurrence and development of neurological diseases. Because of their low ionization efficiency, methods for in situ detection and mass spectrometry imaging (MSI) analysis of FALs remain underreported. On-tissue chemical tagging of hardly ionizable target analytes with easily ionized moieties can improve ionization efficiency and detection sensitivity in MSI experiments. In this study, an on-tissue chemical derivatization-air-flow-assisted desorption electrospray ionization-MSI method was developed to visualize FALs in the rat brain. The method showed high sensitivity and specificity, allowing the use of in situ high-resolution MS3 to identify FALs. The methodology was applied to investigate the region-specific distribution of FALs in the brains of control and diabetic encephalopathy (DE) rats. In DE rats, FALs were found to be significantly enriched in various brain regions, especially in the cerebral cortex, hippocampus, and amygdala. Thus, increased FAL levels and oxidative stress occurred in a region-dependent manner, which may contribute to cognitive function deficits in DE. In summary, we provide a novel method for the in situ detection of FALs in biological tissues as well as new insights into the potential pathogenesis of DE.
Collapse
Affiliation(s)
- Xianyue Meng
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yanhua Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Meiling Huo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Shu Yang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, P. R. China
| | - Xin Zhang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Lu Tian
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jinfeng Wei
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zhaoying Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yanhua Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Zhonghua Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China.,Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, P. R. China
| |
Collapse
|
5
|
Lima NM, Dos Santos GF, da Silva Lima G, Vaz BG. Advances in Mass Spectrometry-Metabolomics Based Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:101-122. [PMID: 37843807 DOI: 10.1007/978-3-031-41741-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Highly selective and sensitive analytical techniques are necessary for microbial metabolomics due to the complexity of the microbial sample matrix. Hence, mass spectrometry (MS) has been successfully applied in microbial metabolomics due to its high precision, versatility, sensitivity, and wide dynamic range. The different analytical tools using MS have been employed in microbial metabolomics investigations and can contribute to the discovery or accelerate the search for bioactive substances. The coupling with chromatographic and electrophoretic separation techniques has resulted in more efficient technologies for the analysis of microbial compounds occurring in trace levels. This book chapter describes the current advances in the application of mass spectrometry-based metabolomics in the search for new biologically active agents from microbial sources; the development of new approaches for in silico annotation of natural products; the different technologies employing mass spectrometry imaging to deliver more comprehensive analysis and elucidate the metabolome involved in ecological interactions as they enable visualization of the spatial dispersion of small molecules. We also describe other ambient ionization techniques applied to the fingerprint of microbial natural products and modern techniques such as ion mobility mass spectrometry used to microbial metabolomic analyses and the dereplication of natural microbial products through MS.
Collapse
|
6
|
Pre-cleaned bare wooden toothpicks for the determination of drugs in oral fluid by mass spectrometry. Anal Bioanal Chem 2022; 414:5287-5296. [PMID: 35274154 PMCID: PMC9242915 DOI: 10.1007/s00216-022-03977-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/18/2022] [Accepted: 02/11/2022] [Indexed: 12/18/2022]
Abstract
This article deepens the potential of pre-cleaned bare wooden toothpicks (pb-WTs) for extracting drugs (antidepressants and acetaminophen) from oral fluid samples. The leaching of the intrinsic compounds from the wood matrix is identified as the main challenge for the final determination of the targets, even when a very selective instrumental technique, such as mass spectrometry, is employed. The pre-cleaning of the WTs is proposed for improving the analytical performance. The number of cleaning cycles depends on the injection mode (direct infusion or chromatography) into the mass spectrometer. The different variables affecting the extraction of selected antidepressant drugs were studied in detail, and the optimum procedure was validated using the two mentioned injection modes. The limits of detection were in the ranges 0.1–0.5 ng/mL and 0.1–0.3 ng/mL for direct infusion and liquid chromatography, respectively. The intra-day precision (expressed as relative standard deviation) was better than 12.1% and 8.6%, for direct infusion and liquid chromatography, respectively. Single-blind samples were used to study the applicability of the method. Finally, as a proof-of-concept, the potential of pb-WTs for in vivo sampling was outlined.
Collapse
|