1
|
Ul Haq H, Elik A, Isci G, Ekici M, Gürsoy N, Boczkaj G, Altunay N. Development of a vortex-assisted switchable-hydrophilicity solvent-based liquid phase microextraction for fast and reliable extraction of Zn (II), Fe (II), Pb (II), and Cd (II) from various baby food products. Food Chem 2024; 447:139024. [PMID: 38493687 DOI: 10.1016/j.foodchem.2024.139024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
This manuscript describes the development of a novel liquid phase microextraction (LPME) method for the extraction and determination of Zn (II), Fe (II), Pb (II), and Cd (II) in various infant/baby food and supplements products. The method is based on vortex-assisted extraction combined with a switchable-hydrophilicity solvent (SHS) sample preparation. The SHS, which undergoes reversible phase changes triggered by pH change, enables selective extraction and easy phase separation. A flame atomic absorption spectroscopy was used in the final determination step. Optimization studies revealed, that the optimal pH of the sample solution (after digestion) during analytes extraction is 5.5. A l-proline is added to the sample (375 mM) to ensure the complexation of the target metal cations. After the complexation step, 750 µL of SHS - a N, N-Dimethylcyclohexylamine along with 0.9 mL of 2 M of acetic acid solution is added (hydrophilicity switch-on stage) and mixed manually to obtain a homogeneous solution. In the last stage, 0.45 mL of 10 M NaOH solution (hydrophilicity switch-off stage) is added to the sample solution and a vortex for 100 s is applied to ensure the effective extraction and separation of the complex containing the analytes. At this stage, a cloudy solution is immediately obtained. Finally, the effective phase separation is obtained at the centrifugation step (4000 rpm for 2 mins). The method limit of detection was as 0.03, 0.009, 0.6, and 0.2 ng/L for Zn (II), Fe (II), Cd (II), and Pb (II) respectively with RSD% below 2.0 %. The analysis of certified reference materials and real samples proved the full applicability of the method for routine analysis, contributing to the field of heavy metal analysis and ensuring the safety of baby products. According to the AGREE methodology, this method can be named as green analytical chemistry method with a score of 0.77.
Collapse
Affiliation(s)
- Hameed Ul Haq
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland
| | - Adil Elik
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| | - Gursel Isci
- Agri Ibrahim Cecen University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Agri, Turkey
| | - Merve Ekici
- Agri Ibrahim Cecen University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Agri, Turkey; Department of Nutrition and Dietetics, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Nevcihan Gürsoy
- Nanotechnology Engineering, Sivas Cumhuriyet University, Sivas, Turkey
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland
| | - Nail Altunay
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey.
| |
Collapse
|
2
|
Sun Y, Yang X, Hu J, Ji F, Chi H, Liu Y, Hu K, Hao F, Wen X. Portable one-step effervescence tablet-based microextraction combined with smartphone digital image colorimetry: Toward field and rapid detection of trace nickel ion. Talanta 2024; 274:126036. [PMID: 38604041 DOI: 10.1016/j.talanta.2024.126036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
In this study, the one-step switchable hydrophilic solvent (SHS)-based effervescence tablet microextraction (ETME) was coupled with smartphone digital image colorimetry (SDIC) for the field detection of nickel ion (Ni2+) for the first time. Both extractant and CO2 were generated in situ when the novel SHS-based effervescence tablet was placed in the sample solution. The complexant 1-(2-pyridinylazo)-2-naphthaleno (PAN) dissolved from the effervescence tablet to form a stable complex with Ni2+, and the extractant was uniformly dispersed in the sample solution under the action of CO2 and fully in contact with Ni-PAN, which enabled efficient extraction of Ni2+. The color changes of the extraction phase were captured by smartphone, then a quantitative relationship between the concentrations of Ni2+ and color intensity of images captured using a smartphone was established by customized applet WASDIC, which realized quantitative analysis of Ni2+ in different samples. Under optimal conditions, the enhancement factor (EF) of the proposed method was 65.1, the limit of detection (LOD) and limit of quantification (LOQ) were 1.69 and 5.64 μg L-1, respectively. The developed method was successfully applied to the detection of trace Ni2+ in the environmental samples and natural medicines. And the applicability of the method for use in field analysis was validated.
Collapse
Affiliation(s)
- Yiping Sun
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Xiaofang Yang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jiayi Hu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Fuchun Ji
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Huajian Chi
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Ya Liu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Kan Hu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Fangfang Hao
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China.
| | - Xiaodong Wen
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
3
|
Semysim FA, Ridha RK, Azooz EA, Snigur D. Switchable hydrophilicity solvent-assisted solidified floating organic drop microextraction for separation and determination of arsenic in water and fish samples. Talanta 2024; 272:125782. [PMID: 38364568 DOI: 10.1016/j.talanta.2024.125782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The aim of the current study was to separate and determine arsenic in water and fish samples using a novel and green solidified floating organic drop microextraction (SFODME), which is based on switchable hydrophilicity solvent (SHS)-assisted procedure followed by hydride generation atomic absorption spectrometry (HG-AAS). The 4-((2-hydroxyquinoline-7-yl)diazenyl)-N-(4-methylisoxazol-3-yl)benzene sulfonamide (HDNMBA) and tertiary amine (4-(2-aminoethyl)-N,N-dimethylbenzylamine (AADMBA) were used as ligand and SHS, respectively. The use of SHS promotes quantitative extraction of arsenic complexes into an extraction solvent (1-undecanol). Some factors that impact extraction recovery were studied. Under optimal conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.005 μg L-1 and 0.015 μg L-1, respectively. The calibration graph was linear up to 900.0 μg L-1 arsenic, with the enrichment factor is 267. The proposed SHS-SFODME methodology for arsenic quantification in water and fish samples was successfully implemented. The environmental friendliness and safety of proposed method were approved by the Analytical Greenness Calculator (AGREE) and the Blue Applicability Grade Index (BAGI) tools.
Collapse
Affiliation(s)
- Farah Abdulraouf Semysim
- Department of Chemistry, The Gifted Students' School in Najaf, Ministry of Education, 54001, Iraq
| | - Rana Kadhim Ridha
- Department of Dairy Science and Technology, College of Food Sciences, Al-Qasim Green University, 51013, Iraq
| | - Ebaa Adnan Azooz
- Department of Chemistry, The Gifted Students' School in Najaf, Ministry of Education, 54001, Iraq; Radoilogical Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.
| | - Denys Snigur
- Department of Analytical and Toxicological Chemistry, Odesa I.I. Mechnikov National University, Odesa, 65082, Ukraine.
| |
Collapse
|
4
|
Fringu I, Anghel D, Fratilescu I, Epuran C, Birdeanu M, Fagadar-Cosma E. Nanomaterials Based on 2,7,12,17-Tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine Exhibiting Bifunctional Sensitivity for Monitoring Chloramphenicol and Co 2. Biomedicines 2024; 12:770. [PMID: 38672126 PMCID: PMC11047853 DOI: 10.3390/biomedicines12040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Monitoring antibiotic retention in human body fluids after treatment and controlling heavy metal content in water are important requirements for a healthy society. Therefore, the approach proposed in this study is based on developing new optical sensors using porphyrin or its bifunctional hybrid materials made with AuNPs to accomplish the accurate detection of chloramphenicol and cobalt. To produce the new optical chloramphenicol sensors, 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine (TBAP) was used, both alone in an acid medium and as a hybrid material with AuNPs in a water-DMSO acidified environment. The same hybrid material in the unchanged water-DMSO medium was the sensing material used for Co2+ monitoring. The best results of the hybrid materials were explained by the synergistic effects between the TBAP azaporphyrin and AuNPs. Chloramphenicol was accurately detected in the range of concentrations between 3.58 × 10-6 M and 3.37 × 10-5 M, and the same hybrid material quantified Co2+ in the concentration range of 8.92 × 10-5 M-1.77 × 10-4 M. In addition, we proved that AuNPs can be used for the detection of azaporphyrin (from 2.66 × 10-5 M to 3.29 × 10-4 M), making them a useful tool to monitor porphyrin retention after cancer imaging procedures or in porphyria disease. In conclusion, we harnessed the multifunctionality of this azaporphyrin and of its newly obtained AuNP plasmonic hybrids to detect chloramphenicol and Co2+ quickly, simply, and with high precision.
Collapse
Affiliation(s)
- Ionela Fringu
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Diana Anghel
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Ion Fratilescu
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Camelia Epuran
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| | - Mihaela Birdeanu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, P. Andronescu Street, No. 1, 300224 Timisoara, Romania;
| | - Eugenia Fagadar-Cosma
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Avenue 24, 300223 Timisoara, Romania; (I.F.); (D.A.); (I.F.); (C.E.)
| |
Collapse
|
5
|
Bozyiğit GD, Zaman BT, Özdemir OK, Kılınç Y, Chormey DS, Bakırdere S, Engin GO. Removal of two antidepressant active pharmaceutical ingredients from hospital wastewater by polystyrene-coated magnetite nanoparticles-assisted batch adsorption process. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:77. [PMID: 38135867 DOI: 10.1007/s10661-023-12231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
This study employed simple polystyrene-coated magnetite nanoparticles (PS@MNPs)-assisted batch adsorption process for the removal of two antidepressant active ingredients (amitriptyline HCl and sertraline HCl) from hospital wastewater. Dominant parameters of the adsorption process including pH, adsorbent amount, and contact period were optimized through the univariate approach to enhance the adsorption efficiency. Upon reaching optimum adsorption conditions, equilibrium experiments were performed by spiking the adsorbates in hospital wastewater in the concentration range of 100-2000 μg/L. The concentrations of the adsorbates in the effluent were calculated using the matrix-matching calibration strategy to enhance the accuracy of quantification. A validated switchable solvent-based liquid phase microextraction (SS-LPME) method was employed to enrich the two active pharmaceutical ingredients (APIs) prior to sensitive determination with GC-MS (gas chromatography-mass spectrometry). The equilibrium data were mathematically modeled employing the Langmuir and Freundlich adsorption isotherm models. The isotherm constants were calculated, and the results showed that both the isotherm models fitted well with the experimental data. The efficient and simple batch adsorption strategy reported in this study was successfully employed to remove amitriptyline HCl and sertraline HCl from hospital wastewater at low concentrations.
Collapse
Affiliation(s)
- Gamze Dalgıç Bozyiğit
- Department of Environmental Engineering, Yildiz Technical University, 34220, İstanbul, Türkiye.
| | - Buse Tuğba Zaman
- Department of Chemistry, Yildiz Technical University, 34220, İstanbul, Türkiye
| | - Oğuz Kaan Özdemir
- Department of Metallurgical and Materials Engineering, Yildiz Technical University, 34220, İstanbul, Türkiye
| | - Yağmur Kılınç
- Department of Environmental Engineering, Bülent Ecevit University, 67100, Zonguldak, Türkiye
| | - Dotse Selali Chormey
- Department of Chemistry, Yildiz Technical University, 34220, İstanbul, Türkiye
- Yildiz Technical University, Neutec Pharmaceutical, Technopark, 34220, İstanbul, Türkiye
| | - Sezgin Bakırdere
- Department of Chemistry, Yildiz Technical University, 34220, İstanbul, Türkiye
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, Ankara, Türkiye
| | - Guleda Onkal Engin
- Department of Environmental Engineering, Yildiz Technical University, 34220, İstanbul, Türkiye
| |
Collapse
|
6
|
Chen Y, Li H, Huang H, Zhang B, Ye Z, Yu X, Shentu X. Recent Advances in Non-Targeted Screening of Compounds in Plastic-Based/Paper-Based Food Contact Materials. Foods 2023; 12:4135. [PMID: 38002192 PMCID: PMC10670899 DOI: 10.3390/foods12224135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Ensuring the safety of food contact materials has become a pressing concern in recent times. However, detecting hazardous compounds in such materials can be a complex task, and traditional screening methods may not be sufficient. Non-targeted screening technologies can provide comprehensive information on all detectable compounds, thereby supporting the identification, detection, and risk assessment of food contact materials. Nonetheless, the non-targeted screening of food contact materials remains a challenging issue. This paper presents a detailed review of non-targeted screening technologies relying on high-resolution mass spectrometry for plastic-based and paper-based food contact materials over the past five years. Methods of extracting, separating, concentrating, and enriching compounds, as well as migration experiments related to non-targeted screening, are examined in detail. Furthermore, instruments and devices of high-resolution mass spectrometry used in non-targeted screening technologies for food contact materials are discussed and summarized. The research findings aim to provide a theoretical basis and practical reference for the risk management of food contact materials and the development of relevant regulations and standards.
Collapse
Affiliation(s)
- Ya Chen
- College of Life Science, China Jiliang University, Hangzhou 310018, China;
| | - Hongyan Li
- Zhejiang Institute of Product Quality and Safety Science, Hangzhou 310018, China;
| | - Haizhi Huang
- College of Life Science, China Jiliang University, Hangzhou 310018, China;
| | - Biao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| |
Collapse
|
7
|
Zhang Y, Fu R, Lu Q, Ren T, Guo X, Di X. Switchable hydrophilicity solvent for extraction of pollutants in food and environmental samples: A review. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
8
|
Sağsöz O, Arvas B, Zaman BT, Yolaçan Ç, Bakırdere S. Determination of trace cobalt ions in bottled drinking water samples from Fiji Island by spray-assisted fine droplet formation-liquid phase microextraction based on simultaneous complexation and extraction before flame atomic absorption spectrometer measurement. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:313. [PMID: 36662307 DOI: 10.1007/s10661-023-10943-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
In this study, a green, simple and effective preconcentration method named as spray-assisted fine droplet formation-liquid phase microextraction (SAFDF-LPME) before the flame atomic absorption spectrophotometry (FAAS) measurement for cobalt determination was developed. The method reduces the external dispersive solvent usage by using a simple spraying apparatus to obtain fine droplets of the extraction solvent. SAFDF-LPME method also consists of simultaneous complexation and extraction which indicates the environmental benevolence of the developed method. This method minimized the relative errors with high repeatability and accuracy by reducing the experimental steps. The influential parameters such as buffer type, buffer solution volume, extraction solvent/ligand solution volume (spraying cycle), and mixing period were systematically optimized by the univariate optimization procedure. With the optimum parameters applied, the detection power of the FAAS system was enhanced to about 110-folds with respect to 2.2 ng mL-1 detection limit calculated for the proposed method. Bottled drinking water samples from Fiji Islands were used to demonstrate the applicability of the developed method for the accurate determination of trace cobalt in real sample matrices. Percent recovery results obtained between 95.5 and 88.5% showed the suitability of the developed method in the determination of cobalt at trace levels even in complex sample matrices.
Collapse
Affiliation(s)
- Oğuzhan Sağsöz
- Chemistry Department, Science and Arts Faculty, Yildiz Technical University, Istanbul, 34220, Türkiye
| | - Büşra Arvas
- Chemistry Department, Science and Arts Faculty, Yildiz Technical University, Istanbul, 34220, Türkiye
| | - Buse Tuğba Zaman
- Chemistry Department, Science and Arts Faculty, Yildiz Technical University, Istanbul, 34220, Türkiye
| | - Çiğdem Yolaçan
- Chemistry Department, Science and Arts Faculty, Yildiz Technical University, Istanbul, 34220, Türkiye
| | - Sezgin Bakırdere
- Chemistry Department, Science and Arts Faculty, Yildiz Technical University, Istanbul, 34220, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, Çankaya, Ankara, 06670, Türkiye.
| |
Collapse
|
9
|
Wang H, Wang T, Hong M, Wang Z, Jin X, Wu H. Direct solidification of switchable-hydrophilicity salicylic acid: A design for the on-site dispersive liquid-liquid microextraction of benzoylurea insecticides in water and honey samples. J Chromatogr A 2023; 1688:463710. [PMID: 36528904 DOI: 10.1016/j.chroma.2022.463710] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/13/2022]
Abstract
This study describes the development of a fully manual method for on-site dispersive liquid-liquid microextraction based on the direct solidification of switchable-hydrophilicity salicylic acid (on-site DLLME-DSSA) coupled with high-performance liquid chromatography with an ultraviolet detector (HPLC-UVD) and its utilization for the detection of benzoylurea insecticides (BUs) in water and honey samples. Salicylic acid (SA), a switchable hydrophilic aromatic acid, was used as an extraction solvent. It can be converted into the hydrophobic/hydrophilic forms in pH-changeable solutions, facilitating facile and effective dispersion and phase separation. Moreover, the melting point of SA (significantly higher than room temperature) enables its direct solidification without an ice-water bath, facilitating its collection by filtration. The dispersion, separation, and collection of the extraction solvent were carried out entirely in a plastic syringe without requiring special apparatus or additional energy. Univariate and response surface analyses were used to optimize various parameters of the on-site DLLME-DSSA method. Under optimal conditions, the limits of determination (LODs) were 1.50 µg L-1 and 0.03-0.09 mg kg-1 in water and honey, respectively. The relative standard deviations (RSDs) for inter-day (n = 5) and intra-day (n = 5) precision were ≤8.4%, whereas the extraction recoveries and enrichment factors for the BUs ranged from 67.0 to 97.1% and 29 to 34, respectively. Furthermore, the proposed method was used for the on-site extraction and laboratory detection of BUs from real water and honey samples. Theoretical analyses indicated non-covalent interactions (such as hydrogen bonds, electrostatic interactions, van der Waals forces, and π-π interactions) to be the main driving force for extraction. This study introduces a switchable hydrophilic aromatic acid capable of direct solidification into on-site DLLME for the first time, opening new frontiers in the development of on-site sample pretreatment methods.
Collapse
Affiliation(s)
- Huazi Wang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China; Anhui Provincial Technology and Engineering Research Centre for Biomass Conversion and Pollution Prevention and Control, Fuyang, Anhui 236037, PR China
| | - Tiantian Wang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - MingXiu Hong
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Ziyang Wang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Xiaoyan Jin
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China.
| | - Hai Wu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China; Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang, Anhui 236037, PR China.
| |
Collapse
|
10
|
Zhang H, Zhao W, Bai T, Fu L, Chen Z, Jing X, Wang X. Sustainable extraction of polyphenols from millet using switchable deep eutectic solvents. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Azevedo Lemos V, Bastos Santos L, Santos Assis R. Deep eutectic solvent in ultrasound-assisted liquid-phase microextraction for determination of vanadium in food and environmental waters. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Altunay N, Tuzen M, Lanjwani MF, Mogaddam MRA. Optimization of a rapid and sensitive ultrasound-assisted liquid–liquid microextraction using switchable hydrophilicity solvent for extraction of β-carotene in fruit juices and vegetables. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Micropreconcentrators: Recent Progress in Designs and Applications. SENSORS 2022; 22:s22041327. [PMID: 35214229 PMCID: PMC8963072 DOI: 10.3390/s22041327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023]
Abstract
The detection of chemicals is a fundamental issue of modern civilisation, however existing methods do not always achieve the desired sensitivity. Preconcentrators, which are devices that allow increasing the concentration of the intended analyte via e.g., adsorption/desorption, are one of the solutions for increasing the sensitivity of chemical detection. The increased detection sensitivity granted by preconcentration can be used to miniaturise detection instruments, granting them portability. The primary goal of this review is to report on and briefly explain the most relevant recent developments related to the design and applications of preconcentrators. The key design elements of preconcentrators and the emerging area of liquid-phase preconcentrators are briefly discussed, with the most significant applications of these devices being highlighted.
Collapse
|