1
|
Xie M, Lu W, Gu S, Lu J, Wu H, Yao L, Du M, Zhang J, Liu Y, Wang Q. A rapid localization and analysis method for isoquinoline alkaloids with fluorescence in Coptis chinensis Franch. By fabricating the nano-silver sol as a substrate for surface-enhanced Raman spectroscopy. Anal Chim Acta 2024; 1287:342067. [PMID: 38182374 DOI: 10.1016/j.aca.2023.342067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/09/2023] [Accepted: 11/22/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The quality of traditional Chinese medicines (TCMs) directly impacts their clinical efficacy and drug safety, making standardization a critical component of modern TCMs. Surface-enhanced Raman spectroscopy (SERS) is an effective physical detection method with speed, sensitivity, and suitability for large sample analyses. In this study, a SERS analysis method was developed using a nano-silver sol as the matrix to address the interference of fluorescence components in TCMs and overcome the limitations of traditional detection methods. RESULTS The higher sensitivity and efficiency of SERS was used, enabling detection of a single sample within 30 s. Coptis chinensis Franch. (CCF) was chosen as the model medicine, the nano-silver sol was used as the matrix, and CCF's fourteen main fluorescent alkaloids were tested as index components. Typical signal peaks of the main components in CCF corresponded to the bending deformation of the nitrogen-containing ring plane outer ring system, methoxy stretching vibration, and isoquinoline ring deformation vibration. Through SERS detection of different parts, the distribution content of the main active components in the cortex of CCF was found to be lower than that in the xylem and phloem. Additionally, rapid quality control analyses indicated that among the nine batches of original medicinal materials purchased from Emei and Guangxi, the main active ingredient showed a higher content. SIGNIFICANCE A SERS-based method for the rapid localization and analysis of multiple components of TCMs was established. The findings highlight the potential of SERS as a valuable tool for the analysis and quality control of TCMs, especially for fluorescent components.
Collapse
Affiliation(s)
- Minzhen Xie
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Wanying Lu
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Siqi Gu
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Junzhong Lu
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Haotian Wu
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Le Yao
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Menghan Du
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Jianjia Zhang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin City, Heilongjiang Province, 150040, China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin City, Heilongjiang Province, 150040, China.
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China.
| |
Collapse
|
2
|
Khajavinia A, El-Aneed A. Carbon-Based Nanoparticles and Their Surface-Modified Counterparts as MALDI Matrices. Anal Chem 2023; 95:100-114. [PMID: 36625120 DOI: 10.1021/acs.analchem.2c04537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Amir Khajavinia
- College of Pharmacy and Nutrition, Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
3
|
Liu Y, Peng Z, Zhou Y, Jia L, He Y, Yang D, Li H, Wang X, Huang S, Zhang J. Pilot study on provenance tracing of cocoons via strontium isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157982. [PMID: 35963413 DOI: 10.1016/j.scitotenv.2022.157982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Isotopic analysis has seen significant use in archaeological sciences to date objects, determine their origin, and depict ancient human dietary habits. However, the potential of this technique for provenance studies of ancient silks remains underdeveloped. In this study, we applied Sr isotopic ratios to the provenance tracing of silkworm cocoons. We investigated the 87Sr/86Sr ratios of cocoons from seven Chinese provinces to determine their regional differences. The 87Sr/86Sr ratios of mulberry leaves and cocoons in Shandong and Sichuan were analyzed and silkworms were cultured at four sampling locations in Hangzhou, Zhejiang, to determine isotopic signature relationships between mulberry leaves and cocoons. Those results showed that the 87Sr/86Sr signature of cocoons not only reflected regional differences, but also was related to the type of soil in each sampling location from which the samples were collected. It is suggested that the Sr isotope ratios was able to be an effective tool for the provenance tracing of cocoons. The Mann-Whitney test result indicated no significant differences in isotopic ratios between mulberry leaves and cocoons. In other words, mulberry leaves may predict mean isotopic values in the cocoons. No clear evidence of Sr isotopic fractionation was found in our control experiments. However, mulberry leaves and cocoons from Sichuan did not show significant correlation between them, overall reducing the predictive power of the 87Sr/86Sr ratios of mulberry leaf for provenance studies of cocoons. Finally, in order to improve the accuracy of Sr isotope ratios for the provenance tracing of cocoons, more 87Sr/86Sr data should be complemented and the relationship needs to be established between Sr isotope information in more kinds of proxies and cocoons.
Collapse
Affiliation(s)
- Yong Liu
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhiqin Peng
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yang Zhou
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China
| | - Liling Jia
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China
| | - YuJie He
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Yang
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hao Li
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoyun Wang
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shiying Huang
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jichao Zhang
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
4
|
Zhang W, Ding M, Zhang X, Shang H. Biosynthesis-mediated Ni-Fe-Cu LDH-to-sulfides transformation enabling sensitive detection of endogenous hydrogen sulfide with dual-readout signals. Anal Chim Acta 2022; 1229:340390. [PMID: 36156228 DOI: 10.1016/j.aca.2022.340390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022]
Abstract
Hydrogen sulfide (H2S) is a vital endogenous gas signal molecule undertaking numerous physiological functions such as biological regulation and cytoprotection. Herein, we developed an electrochemical (EC) and photothermal (PT) dual-readout signals method for H2S detection based on a novel biosynthesis-mediated Ni-Fe-Cu LDH-to-sulfides transformation strategy. Interestingly, the Cu2+-based Ni-Fe LDH (Ni-Fe-Cu LDH) can act as the Cu2+ source to react with H2S, resulting in the in-situ generation of CuxS on Ni-Fe-Cu LDH surfaces. Because of the EC signal and intrinsic near-infrared (NIR) PT conversion ability of CuxS under 808 nm laser irradiation, the obtained CuxS@Ni-Fe-Cu LDH is applied to stimulate EC signal and temperature readout. By this means, a dual-readout signal mode is established for H2S detection. Under the optimum conditions, this combination of EC and PT methods displays a wide linear range for H2S to 0.1 μM-90 μM and 50 μM-400 μM, respectively, with a low detection limit of 0.09 μM. In addition, the practicality of Ni-Fe-Cu LDH is verified by determination of endogenous H2S in living cells. This work not only provides a promising application for H2S diagnosis but also exhibits the new characteristic of Ni-Fe-Cu LDH nanomaterials as signal transduction tags.
Collapse
Affiliation(s)
- Wen Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Meili Ding
- College of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Xiaofei Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Hongyuan Shang
- College of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China.
| |
Collapse
|
6
|
Rezić I, Škoc MS, Majdak M, Jurić S, Stracenski KS, Vlahoviček-Kahlina K, Vinceković M. ICP-MS Determination of Antimicrobial Metals in Microcapsules. Molecules 2022; 27:3219. [PMID: 35630696 PMCID: PMC9145547 DOI: 10.3390/molecules27103219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Silver (Ag) and zinc (Zn) are very powerful antimicrobial metals. Therefore, in this research, a high-throughput, sensitive, and rapid method was developed for the determination of Ag and Zn in microcapsules using inductively coupled plasma mass spectrometry (ICP-MS). The sample preparation procedure employed simple microwave digestion of the microcapsules with 55.55% v/v HNO3 and 44.45% v/v H2O2. The method was applied to determine Ag and Zn in microcapsule samples of different sizes (120 and 450 μm) after their preparation with and without chitosan. Prepared microcapsules, after characterization, were bonded to a polymer carrier by sol-gel procedure and the materials were characterized by FTIR spectroscopy and high-resolution optical microscopy. Significant differences were found in Ag and Zn levels between microcapsules samples prepared with and without chitosan. The results have shown that samples with chitosan had up to 20% higher levels of Zn than Ag: 120 μm microcapsules contained 351.50 μg/g of Ag and 85.51 μg/g of Zn, respectively. In contrast, samples prepared without chitosan showed larger overall variability: In microcapsules with a diameter of 120 μm, the amounts of antimicrobial metals were 98.32 μg/g of Ag and 106.75 μg of Zn, respectively. Moreover, 450 μm microcapsules contained 190.98 μg/g of Ag and 121.35 μg/g of Zn. Those quantities are high enough for efficient antimicrobial activity of newly prepared microcapsules, enabling the application of microcapsules in different antimicrobial coatings.
Collapse
Affiliation(s)
- Iva Rezić
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Maja Somogyi Škoc
- Department of Material Testing, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Mislav Majdak
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Slaven Jurić
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (S.J.); (K.S.S.); (K.V.-K.); (M.V.)
| | - Katarina Sopko Stracenski
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (S.J.); (K.S.S.); (K.V.-K.); (M.V.)
| | | | - Marko Vinceković
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (S.J.); (K.S.S.); (K.V.-K.); (M.V.)
| |
Collapse
|