1
|
Bai Y, Zhang H. The cluster analysis of traditional Chinese medicine authenticity identification technique assisted by chemometrics. Heliyon 2024; 10:e37479. [PMID: 39309934 PMCID: PMC11416282 DOI: 10.1016/j.heliyon.2024.e37479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
This study explore the authenticity identification technique of traditional Chinese medicine (TCM) using chemometrics in conjunction with cluster analysis. A clustering Gaussian mixture model was constructed and applied for the data clustering analysis of four types of TCM. Chemical measurements combined with discrete wavelet transform (DWT), Fourier transform infrared spectroscopy (FTIR), and Fourier self-deconvolution (FSD) were utilized for the detailed differentiation of Bupleurum scorzonerifolium, Bupleurum yinchowense, Bupleurum marginatum, and Bupleurum smithii Wolff var. parvifolium. Differences in the attenuated total reflection-FTIR (ATR-FTIR) spectra among the four TCMs were observed. Utilizing clustering algorithms, the one-dimensional DWT of the infrared spectra of samples was employed for the authentication of Chinese herbal medicines. The model demonstrates optimal performance throughout 2000 rounds of network training. The accuracy (88.6 %), sensitivity (86.5 %), and specificity (82.7 %) of the model constructed in this study significantly surpassed those of the CNN model: accuracy (67.7 %), sensitivity (70.4 %), and specificity (68.5 %) (P < 0.05). By setting the cluster size K = 5 and the number of Gaussian mixture model components to 5, the model effectively fits the actual number of categories within the dataset. Infrared spectroscopy analysis revealed distinct carbon-oxygen stretching vibration absorption peaks between 1025 and 1200 cm-1 for Bupleurum scorzonerifolium, Bupleurum yinchowense, Bupleurum marginatum, and Bupleurum smithii Wolff var. parvifolium, indicating strong absorption peaks of carbohydrates. A comprehensive structural information analysis revealed a similarity of above 0.982 among the four types of TCM. Combined with chemometrics and intelligent algorithm-based cluster analysis, successful and accurate authentication of TCM authenticity was achieved, providing an effective methodology for quality control in TCM.
Collapse
Affiliation(s)
- Yunxia Bai
- College of Computer Science and Technology, Baotou Medical College, Baotou, 014040, China
| | - Huiwen Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| |
Collapse
|
2
|
Kamalasekaran K, Sundramoorthy AK. Applications of chemically modified screen-printed electrodes in food analysis and quality monitoring: a review. RSC Adv 2024; 14:27957-27971. [PMID: 39224631 PMCID: PMC11367709 DOI: 10.1039/d4ra02470b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Food analysis and food quality monitoring are vital aspects of the food industry, ensuring the safety and authenticity of various food products, from packaged goods to fast food. In this comprehensive review, we explore the applications of chemically modified Screen-Printed Electrodes (SPEs) in these critical domains. SPEs have become extremely useful devices for ensuring food safety and quality assessment because of their adaptability, affordability, and convenience of use. The Introduction opens the evaluation, that covers a wide spectrum of foods, encompassing packaged, junk food, and food quality concerns. This sets the stage for a detailed exploration of chemically modified SPEs, including their nature, types, utilization, and the advantages they offer in the context of food analysis. Subsequently, the review delves into the multitude applications of SPEs in food analysis, ranging from the detection of microorganisms such as bacteria and fungi, which are significant indicators of food spoilage and safety, to the identification of pesticide residues, food colorants, chemicals, toxins, and antibiotics. Furthermore, chemically modified SPEs have proven to be invaluable in the quantification of metal ions and vitamins in various food matrices, shedding light on nutritional content and quality.
Collapse
Affiliation(s)
- Kavitha Kamalasekaran
- Department of Chemistry, Velammal Engineering College Chennai 600066 Tamil Nadu India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics and Materials Science, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai 600077 Tamil Nadu India
| |
Collapse
|
3
|
Malarat N, Soleh A, Saisahas K, Samoson K, Promsuwan K, Saichanapan J, Wangchuk S, Meng L, Limbut W. Electropolymerization of poly(phenol red) on laser-induced graphene electrode enhanced adsorption of zinc for electrochemical detection. Talanta 2024; 272:125751. [PMID: 38377665 DOI: 10.1016/j.talanta.2024.125751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
We present a highly sensitive and selective electrode of laser-induced graphene modified with poly(phenol red) (P(PhR)@LIG) for measuring zinc nutrition in rice grains using square wave anodic stripping voltammetry (SWASV). The physicochemical properties of P(PhR)@LIG were investigated with scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier infrared spectroscopy (FT-IR) and Raman spectroscopy. The modified electrode demonstrated an amplified anodic stripping response of Zn2+ due to the electropolymerization of P(PhR), which enhanced analyte adsorption during the accumulation step of SWASV. Under optimized parameters, the developed sensor provided a linear range from 30 to 3000 μg L-1 with a detection limit of 14.5 μg L-1. The proposed electrode demonstrated good reproducibility and good anti-interference properties. The sensor detected zinc nutrition in rice grain samples with good accuracy and the results were consistent with the standard ICP-OES method.
Collapse
Affiliation(s)
- Natchaya Malarat
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Asamee Soleh
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Krisada Samoson
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sangay Wangchuk
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Lingyin Meng
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden.
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
4
|
Darwish IA, Suzuki K, Ogawa H, Wang Z. A prototype of ultrasensitive time-resolved fluoroimmunoassay for the quantitation of lead in plasma using a fluorescence-enhanced europium chelate label for the detection system. RSC Adv 2024; 14:8671-8683. [PMID: 38495999 PMCID: PMC10938379 DOI: 10.1039/d3ra07673c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
This study describes the prototype of a novel ultra-sensitive time-resolved fluoroimmunoassay (TRFIA) for the quantification of lead (Pb) in plasma. The assay procedures were conducted in 96-microwell plates and involved the competitive binding format. The assay used a mouse monoclonal antibody, designated as 2C33, that specifically recognized the diethylenetriamine pentaacetic acid chelate of Pb (Pb-DTPA) but did not recognize Pb-free DTPA chelator. The antigen used for coating onto the inner surfaces of assay plate microwells was Pb-DTPA conjugated with bovine serum albumin protein (Pb-DTPA-BSA). The competitive binding reaction occurred between Pb-DTPA chelates, formed in the sample solutions by treating the samples with an excess DTPA, and the coated Pb-DTPA-BSA for a limited quantity of 2C33 antibody binding sites. The antigen-antibody complex formed in the plate wells was quantified by a europium-DTPA-labeled secondary antibody and a fluorescence enhancement solution. The conditions of the assay were refined, and its optimum procedures were established. The TRFIA was validated following the immunoassay validation guidelines, and all of the validation criteria were acceptable. The working range of the assay was 20-300 pg mL-1 and its limit of quantitation was 20 pg mL-1. Metals that are commonly encountered in blood plasma did not interfere with Pb in the analysis by the proposed TRFIA. The assay was applied to the quantitation of Pb in plasma samples with satisfactory accuracy and precision. The results were compared favorably with those obtained by atomic emission spectroscopy. In conclusion, the present study represents the first TRFIA for the quantitation of Pb in plasma. The assay is superior to the existing atomic spectrometric methods and other immunoassays for Pb in terms of sensitivity, convenience, and analysis throughputs. The proposed TRFIA is anticipated to effectively contribute to assessing Pb concentrations and controlling the exposure of humans to its potential toxicity.
Collapse
Affiliation(s)
- Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia +966-114676220 +966-114677348
| | - Kenzi Suzuki
- Faculty of Pharmaceutical Sciences, Setsunan University Nagao-toge-machi Hirakata 573-01 Japan
| | - Hiroshi Ogawa
- Core Research for Evolutional Sciences and Technology, Japan Science and Technology Tokyo 113-0033 Japan
| | - Zongzhi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences Wuhan China
| |
Collapse
|