1
|
Yang Z, Zhang N, Lv H, Ju X, Chen Y, Zhang Z, Tian Y, Zhao B. An aptamer sensor based on AgNPs@MOF for surface-enhanced Raman spectroscopy detection of sulfadimethoxine in food. Mikrochim Acta 2024; 192:29. [PMID: 39718634 DOI: 10.1007/s00604-024-06897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
A highly sensitive aptamer sensor (aptasensor) is proposed based on metal-organic frameworks-silver nanoparticles (AgNPs@MOF) to detect sulfadimethoxine (SDM) by surface-enhanced Raman spectroscopy (SERS). AgNPs@MOF with SERS activity was successfully fabricated by synthesizing AgNPs in situ on the surface of MIL-101(Fe), and SDM aptamer and Raman reporter 4-aminophenthiophenol (4-ATP) were selected as specific recognition elements and signal probes, respectively. When SDM was absent, the SDM aptamers were effectively adsorbed on the surface of AgNPs@MOF, thus keeping AgNPs@MOF in a dispersed state, resulting in a weakened SERS signal of 4-ATP. In the presence of SDM, the combination of SDM and aptamer formed a rigid hairpin SDM-aptamer complex, which bound less to AgNPs@MOF. Therefore, fewer aptamers were adsorbed on AgNPs@MOF, which exposed more hot spots, resulting in an enhanced SERS signal of 4-ATP. The aptasensor had good selectivity and sensitivity towards SDM and a good linear relationship between SERS intensity and SDM concentration in the range 6.00-150.00 ng/mL, with the limit of detection as low as 2.73 ng/mL. Further application to honey and chicken samples spiked with SDM resulted in satisfactory recoveries, and the aptasensor showed good stability and reproducibility in real samples. The aptasensor based on AgNPs@MOF was proposed for the first time to detect trace SDM by SERS, which provided a favorable way to develop various sensing platforms for antibiotic detection in food safety.
Collapse
Affiliation(s)
- Zhanye Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Nan Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Haiyang Lv
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Xinge Ju
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Yanhua Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Ziwei Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China.
| | - Yuan Tian
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
2
|
Gwon Y, Kim JH, Lee SW. Quantification of Plasma Dopamine in Depressed Patients Using Silver-Enriched Silicon Nanowires as SERS-Active Substrates. ACS Sens 2024; 9:870-882. [PMID: 38354414 DOI: 10.1021/acssensors.3c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A decrease in the levels of dopamine (DA)─a key catecholamine biomarker for major depressive disorder─highlights the need for quantitative analysis of biological fluids to aid in the early diagnosis of diverse neuropsychiatric disorders. This study developed silicon nanowires enriched with silver nanoparticles to serve as a surface-enhanced Raman scattering (SERS) substrate to enable precise and sensitive quantification of blood plasma DA levels in humans. The silver-enriched silicon nanowires (SiNWs@Ag) yielded flower-like assemblies with densely populated SERS "hot spots," allowing sensitive DA detection. By correlating DA concentration with Raman intensity at 1156 cm-1, the plasma DA levels in treatment-naïve patients with major depression (n = 18) were 2 orders of magnitude lower than those in healthy controls (n = 18) (6.56 × 10-10 M vs 1.43 × 10-8 M). The plasma DA concentrations differed significantly between the two groups (two-tailed p = 5.77×10-7), highlighting a distinct demarcation between depression patients and healthy controls. Furthermore, the SiNWs@Ag substrate effectively differentiated between DA and norepinephrine (NE) in mixtures at nanomolar levels, demonstrating its selective detection capability. This study represents the first report on the quantitative detection of DA levels in human blood samples from individuals with major depression using an SERS technique, emphasizing its potential clinical utility in the evaluation and diagnosis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Youngju Gwon
- Department of Chemical and Biological Engineering, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam City, Gyeonggi-do 461-701, South Korea
| | - Jong-Hoon Kim
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Neuroscience Research Institute, Gachon University, Incheon 21565, South Korea
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam City, Gyeonggi-do 461-701, South Korea
| |
Collapse
|
3
|
Huang L, Zhang Z. Recent Advances in the DNA-Mediated Multi-Mode Analytical Methods for Biological Samples. BIOSENSORS 2023; 13:693. [PMID: 37504092 PMCID: PMC10377368 DOI: 10.3390/bios13070693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
DNA-mediated nanotechnology has become a research hot spot in recent decades and is widely used in the field of biosensing analysis due to its distinctive properties of precise programmability, easy synthesis and high stability. Multi-mode analytical methods can provide sensitive, accurate and complementary analytical information by merging two or more detection techniques with higher analytical throughput and efficiency. Currently, the development of DNA-mediated multi-mode analytical methods by integrating DNA-mediated nanotechnology with multi-mode analytical methods has been proved to be an effective assay for greatly enhancing the selectivity, sensitivity and accuracy, as well as detection throughput, for complex biological analysis. In this paper, the recent progress in the preparation of typical DNA-mediated multi-mode probes is reviewed from the aspect of deoxyribozyme, aptamer, templated-DNA and G-quadruplex-mediated strategies. Then, the advances in DNA-mediated multi-mode analytical methods for biological samples are summarized in detail. Moreover, the corresponding current applications for biomarker analysis, bioimaging analysis and biological monitoring are introduced. Finally, a proper summary is given and future prospective trends are discussed, hopefully providing useful information to the readers in this research field.
Collapse
Affiliation(s)
- Lu Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Shi J, Wen G, Liang A, Jiang Z. A novel bifunctional molecularly imprinted polymer-based SERS/RRS dimode nanosensor for ultratrace acetamiprid. Talanta 2023; 260:124640. [PMID: 37149936 DOI: 10.1016/j.talanta.2023.124640] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
A new acetamiprid (AP) molecularly imprinted polymer (MIP) nanosol was synthesized with α-methacrylic acid as functional monomer, ethylene glycol dimethacrylate as crosslinker and 2,2'-azobisisobutyronitrile as initiator, under the microwave irradiation. It was characterized by transmission electron microscopy, specific surface area and pore size analysis, and molecular spectroscopy. The bifunctional MIP nanomaterial not only had the recognition of AP but also had a strong catalysis of the nanogold dimode indicator reaction of chloroauric acid-dopamine. The generated gold nanoparticles (AuNPs) had strong surface-enhanced Raman scattering (SERS) and resonance Rayleigh scattering (RRS) effects, and the two kinds of signals enhanced linearly with imprinted molecule AP increasing. Accordingly, a novel SERS/RRS nanosensor platform was constructed to detect 0.25-20 pmol/L and 0.5-50 pmol/L AP by SERS and RRS monitoring respectively. Moreover, a reliable nanocatalytic mechanism was proposed.
Collapse
Affiliation(s)
- Jinling Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
| |
Collapse
|
5
|
Park JH, Eom YS, Kim TH. Recent Advances in Aptamer-Based Sensors for Sensitive Detection of Neurotransmitters. BIOSENSORS 2023; 13:bios13040413. [PMID: 37185488 PMCID: PMC10136356 DOI: 10.3390/bios13040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
In recent years, there has been an increased demand for highly sensitive and selective biosensors for neurotransmitters, owing to advancements in science and technology. Real-time sensing is crucial for effective prevention of neurological and cardiovascular diseases. In this review, we summarise the latest progress in aptamer-based biosensor technology, which offers the aforementioned advantages. Our focus is on various biomaterials utilised to ensure the optimal performance and high selectivity of aptamer-based biosensors. Overall, this review aims to further aptamer-based biosensor technology.
Collapse
Affiliation(s)
- Joon-Ha Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yun-Sik Eom
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
6
|
Fredj Z, Sawan M. Advanced Nanomaterials-Based Electrochemical Biosensors for Catecholamines Detection: Challenges and Trends. BIOSENSORS 2023; 13:211. [PMID: 36831978 PMCID: PMC9953752 DOI: 10.3390/bios13020211] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Catecholamines, including dopamine, epinephrine, and norepinephrine, are considered one of the most crucial subgroups of neurotransmitters in the central nervous system (CNS), in which they act at the brain's highest levels of mental function and play key roles in neurological disorders. Accordingly, the analysis of such catecholamines in biological samples has shown a great interest in clinical and pharmaceutical importance toward the early diagnosis of neurological diseases such as Epilepsy, Parkinson, and Alzheimer diseases. As promising routes for the real-time monitoring of catecholamine neurotransmitters, optical and electrochemical biosensors have been widely adopted and perceived as a dramatically accelerating development in the last decade. Therefore, this review aims to provide a comprehensive overview on the recent advances and main challenges in catecholamines biosensors. Particular emphasis is given to electrochemical biosensors, reviewing their sensing mechanism and the unique characteristics brought by the emergence of nanotechnology. Based on specific biosensors' performance metrics, multiple perspectives on the therapeutic use of nanomaterial for catecholamines analysis and future development trends are also summarized.
Collapse
Affiliation(s)
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| |
Collapse
|
7
|
Zhao Y, Chen Q, Zhang C, Li C, Jiang Z, Liang A. Aptamer Trimode Biosensor for Trace Glyphosate Based on FeMOF Catalytic Oxidation of Tetramethylbenzidine. BIOSENSORS 2022; 12:920. [PMID: 36354430 PMCID: PMC9688084 DOI: 10.3390/bios12110920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The stable and highly catalytic Fe metal-organic framework (FeMOF) nanosol was prepared and characterized by electron microscopy, and energy and molecular spectral analysis. It was found that FeMOF strongly catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce TMBox, which had a fluorescence (FL) peak at 410 nm. When silver nanoparticles were added, it exhibited strong resonance Rayleigh scattering (RRS) activity and surface-enhanced Raman scattering (SERS) effect. This new FeMOF nanocatalytic trimode indicator reaction was combined with the glyphosate aptamer reaction to establish a new SERS/RRS/FL trimode biosensor for glyphosate. The sensor can be used for the analysis of environmental wastewater, and a new method for detecting glyphosate content in wastewater is proposed. The linear range of the sensor is 0.1-14 nmol/L, the detection limit is 0.05 nmol/L, the recovery is 92.1-97.5%, and the relative standard deviation is 3.6-8.7%.
Collapse
Affiliation(s)
- Yuxiang Zhao
- School of Public Health, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Qianmiao Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Chi Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Chongning Li
- School of Public Health, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Zhiliang Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Aihui Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| |
Collapse
|
8
|
Li C, Lin L, Bai H, Jiang Z. A new CaMOF resonance Rayleigh scattering probe for trace sulfide based-methylene blue receptor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Zhang Y, Xue C, Xu Y, Cui S, Ganeev AA, Kistenev YV, Gubal A, Chuchina V, Jin H, Cui D. Metal-organic frameworks based surface-enhanced Raman spectroscopy technique for ultra-sensitive biomedical trace detection. NANO RESEARCH 2022; 16:2968-2979. [PMID: 36090613 PMCID: PMC9440655 DOI: 10.1007/s12274-022-4914-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 05/28/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted widespread interest due to their unique and unprecedented advantages in microstructures and properties. Besides, surface-enhanced Raman scattering (SERS) technology has also rapidly developed into a powerful fingerprint spectroscopic technique that can provide rapid, non-invasive, non-destructive, and ultra-sensitive detection, even down to single molecular level. Consequently, a considerable amount of researchers combined MOFs with the SERS technique to further improve the sensing performance and broaden the applications of SERS substrates. Herein, representative synthesis strategies of MOFs to fabricate SERS-active substrates are summarized and their applications in ultra-sensitive biomedical trace detection are also reviewed. Besides, relative barriers, advantages, disadvantages, future trends, and prospects are particularly discussed to give guidance to relevant researchers.
Collapse
Affiliation(s)
- Yuna Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Cuili Xue
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yuli Xu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shengsheng Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Alexander A. Ganeev
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Yury V. Kistenev
- Tomsk State University, Lenina Av. 36, Tomsk, Tomsk, 634050 Russia
| | - Anna Gubal
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Victoria Chuchina
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Han Jin
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241 China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241 China
| |
Collapse
|