1
|
Goldberg A, McGrath S, Marber M. How Close Are We to Patient-Side Troponin Testing? J Clin Med 2024; 13:7570. [PMID: 39768493 PMCID: PMC11727911 DOI: 10.3390/jcm13247570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Laboratory-based high-sensitivity cardiac troponin testing has been the pillar for emergency stratification of suspected acute coronary syndrome for well over a decade. Point-of-care troponin assays achieving the requisite analytical sensitivity have recently been developed and could accelerate such assessment. This review summarises the latest assays and describes their potential diverse clinical utility in the emergency department, community healthcare, pre-hospital, and other hospital settings. It outlines the current clinical data but also highlights the evidence gap, particularly the need for clinical trials using whole blood, that must be addressed for safe and successful implementation of point-of-care troponin analysis into daily practice. Additionally, how point-of-care troponin testing can be coupled with advances in biosensor technology, cardiovascular screening, and triage algorithms is discussed.
Collapse
Affiliation(s)
| | - Samuel McGrath
- BHF Centre of Research Excellence, The Rayne Institute, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Michael Marber
- BHF Centre of Research Excellence, The Rayne Institute, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| |
Collapse
|
2
|
N-Dodecyl-ethane-1,2-diamine as amphiphilic molecular probes in liquid crystal-based sensors for detecting aluminum ions. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Norouzi S, Zhang R, Munguia-Fernández JG, de Pablo L, Zhou Y, Taheri-Qazvini N, Shapiro H, Morin S, Martinez-Gonzalez JA, Sadati M, de Pablo JJ. Director Distortion and Phase Modulation in Deformable Nematic and Smectic Liquid Crystal Spheroids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15272-15281. [PMID: 36454950 DOI: 10.1021/acs.langmuir.2c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The growing interest in integrating liquid crystals (LCs) into flexible and miniaturized technologies brings about the need to understand the interplay between spatially curved geometry, surface anchoring, and the order associated with these materials. Here, we integrate experimental methods and computational simulations to explore the competition between surface-induced orientation and the effects of deformable curved boundaries in uniaxially and biaxially stretched nematic and smectic microdroplets. We find that the director field of the nematic LCs upon uniaxial strain reorients and forms a larger twisted defect ring to adjust to the new deformed geometry of the stretched droplet. Upon biaxial extension, the director field initially twists in the now oblate geometry and subsequently transitions into a uniform vertical orientation at high strains. In smectic microdroplets, on the other hand, LC alignment transforms from a radial smectic layering to a quasi-flat layering in a compromise between interfacial and dilatation forces. Upon removing the mechanical strain, the smectic LC recovers its initial radial configuration; however, the oblate geometry traps the nematic LC in the metastable vertical state. These findings offer a basis for the rational design of LC-based flexible devices, including wearable sensors, flexible displays, and smart windows.
Collapse
Affiliation(s)
- Sepideh Norouzi
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Rui Zhang
- Hong Kong University of Science & Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Juan G Munguia-Fernández
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1580, San Luis Potosí 78295, México
| | - Luis de Pablo
- University of Chicago Laboratory Schools, 1362 E 59th Street, Chicago, Illinois 60637, United States
| | - Ye Zhou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Harrison Shapiro
- University of Chicago Laboratory Schools, 1362 E 59th Street, Chicago, Illinois 60637, United States
| | - Samuel Morin
- University of Chicago Laboratory Schools, 1362 E 59th Street, Chicago, Illinois 60637, United States
| | - Jose A Martinez-Gonzalez
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1580, San Luis Potosí 78295, México
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Rouhbakhsh Z, Huang JW, Ho TY, Chen CH. Liquid crystal-based chemical sensors and biosensors: From sensing mechanisms to the variety of analytical targets. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Yu Z, Gong H, Xue F, Zeng Y, Liu X, Tang D. Flexible and High-Throughput Photothermal Biosensors for Rapid Screening of Acute Myocardial Infarction Using Thermochromic Paper-Based Image Analysis. Anal Chem 2022; 94:13233-13242. [PMID: 36099057 DOI: 10.1021/acs.analchem.2c02957] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we developed a flexible, low-cost thermosensitive fiber paper for the visual display in photothermal biosensing systems for early acute myocardial infarction. The thermal signal visualization device was encapsulated with rewritable thermal fibers, which exhibited excellent stability and reversibility. The mechanism of color change in thermal paper was based on a temperature-driven reversible transformation of the structure of the dye molecule (crystalline violet lactone, CVL). It exhibits a gradation from blue to colorless at higher temperatures and gradually returns to blue when the temperature drops. Immobilization and cascade enzymatic reactions of target molecules occurred in an integrated 3D-printed detection device, a photothermal conversion process occurred under near-infrared light excitation, and the colorimetric change values of the encapsulated thermal paper were recorded and evaluated for possible pathogenicity using a smartphone. It was worth noting that the effect of the thermogenic ring-opening behavior of CVL on the macroscopic phenomenon of color change was obtained by density functional theory calculations. Under optimized conditions, the naked-eye-recognizable range of the thermal paper-based photothermal immunoassay sensor was 0.2-20 ng mL-1, This work creatively presents theoretical studies of promising thermal paper-based photothermal biosensors and provides new insights for the development of low-cost, instrument-free portable photothermal biosensors.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Hexiang Gong
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Fangqin Xue
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|