1
|
Liu S, Pang H, Wang C, Wang Z, Wang M, Zhang Y, Zhang W, Sui Z. Rapid and accurate quantification of viable Bifidobacterium cells in milk powder with a propidium monoazide-antibiotic fluorescence in situ hybridization-flow cytometry method. J Dairy Sci 2024; 107:7678-7690. [PMID: 38908696 DOI: 10.3168/jds.2024-24876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
Due to its beneficial effects on human health, Bifidobacterium is commonly added to milk powder. Accurate quantification of viable Bifidobacterium is essential for assessing the therapeutic efficacy of milk powder. In this study, we introduced a novel propidium monoazide (PMA)-antibiotic fluorescence in situ hybridization (AFISH)-flow cytometry (FC) method to rapidly and accurately quantify viable Bifidobacterium cells in milk powder. Briefly, Bifidobacterium cells were treated with chloramphenicol (CM) to increase their rRNA content, followed by staining with RNA-binding oligonucleotide probes, based on the AFISH technique. Then, the DNA-binding dye PMA was used to differentiate between viable and nonviable cells. The PMA-AFISH-FC method, including sample pretreatment, CM treatment, dual staining, and FC analysis, required approximately 2 h and was found to be better than the current methods. This is the first study to implement FC combined with PMA and an oligonucleotide probe for detecting Bifidobacterium.
Collapse
Affiliation(s)
- Siyuan Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding 071001, China
| | - Huimin Pang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding 071001, China
| | - Chenglong Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Ziquan Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Meng Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Yunzhe Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding 071001, China
| | - Wei Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding 071001, China.
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China.
| |
Collapse
|
2
|
Dong L, Zhang Y, Fu B, Swart C, Jiang H, Liu Y, Huggett J, Wielgosz R, Niu C, Li Q, Zhang Y, Park SR, Sui Z, Yu L, Liu Y, Xie Q, Zhang H, Yang Y, Dai X, Shi L, Yin Y, Fang X. Reliable biological and multi-omics research through biometrology. Anal Bioanal Chem 2024; 416:3645-3663. [PMID: 38507042 DOI: 10.1007/s00216-024-05239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Metrology is the science of measurement and its applications, whereas biometrology is the science of biological measurement and its applications. Biometrology aims to achieve accuracy and consistency of biological measurements by focusing on the development of metrological traceability, biological reference measurement procedures, and reference materials. Irreproducibility of biological and multi-omics research results from different laboratories, platforms, and analysis methods is hampering the translation of research into clinical uses and can often be attributed to the lack of biologists' attention to the general principles of metrology. In this paper, the progresses of biometrology including metrology on nucleic acid, protein, and cell measurements and its impacts on the improvement of reliability and comparability in biological research are reviewed. Challenges in obtaining more reliable biological and multi-omics measurements due to the lack of primary reference measurement procedures and new standards for biological reference materials faced by biometrology are discussed. In the future, in addition to establishing reliable reference measurement procedures, developing reference materials from single or multiple parameters to multi-omics scale should be emphasized. Thinking in way of biometrology is warranted for facilitating the translation of high-throughput omics research into clinical practices.
Collapse
Affiliation(s)
- Lianhua Dong
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China.
| | - Yu Zhang
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Boqiang Fu
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Claudia Swart
- Physikalisch-Technische Bundesanstalt, 38116, Braunschweig, Germany
| | | | - Yahui Liu
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Jim Huggett
- National Measurement Laboratory at LGC (NML), Teddington, Middlesex, UK
| | - Robert Wielgosz
- Bureau International Des Poids Et Mesures (BIPM), Pavillon de Breteuil, 92312, Sèvres Cedex, France
| | - Chunyan Niu
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Qianyi Li
- BGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yongzhuo Zhang
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Sang-Ryoul Park
- Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Zhiwei Sui
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Lianchao Yu
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | | | - Qing Xie
- BGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongfu Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xinhua Dai
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China.
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Ye Yin
- BGI, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xiang Fang
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
3
|
Zhuang L, Gong J, Zhao Y, Yang J, Liu G, Zhao B, Song C, Zhang Y, Shen Q. Progress in methods for the detection of viable Escherichia coli. Analyst 2024; 149:1022-1049. [PMID: 38273740 DOI: 10.1039/d3an01750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Escherichia coli (E. coli) is a prevalent enteric bacterium and a necessary organism to monitor for food safety and environmental purposes. Developing efficient and specific methods is critical for detecting and monitoring viable E. coli due to its high prevalence. Conventional culture methods are often laborious and time-consuming, and they offer limited capability in detecting potentially harmful viable but non-culturable E. coli in the tested sample, which highlights the need for improved approaches. Hence, there is a growing demand for accurate and sensitive methods to determine the presence of viable E. coli. This paper scrutinizes various methods for detecting viable E. coli, including culture-based methods, molecular methods that target DNAs and RNAs, bacteriophage-based methods, biosensors, and other emerging technologies. The review serves as a guide for researchers seeking additional methodological options and aiding in the development of rapid and precise assays. Moving forward, it is anticipated that methods for detecting E. coli will become more stable and robust, ultimately contributing significantly to the improvement of food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Guofang Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Chunlei Song
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| |
Collapse
|
4
|
Wang C, Liu S, Wang Z, Wang M, Pang H, Liu Y, Chang H, Sui Z. Rapid and Accurate Quantification of Viable Lactobacillus Cells in Infant Formula by Flow Cytometry Combined with Propidium Monoazide and Signal-Enhanced Fluorescence In Situ Hybridization. Anal Chem 2024; 96:1093-1101. [PMID: 38204177 DOI: 10.1021/acs.analchem.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Lactobacillus is an important member of the probiotic bacterial family for regulating human intestinal microflora and preserving its normalcy, and it has been widely used in infant formula. An appropriate and feasible method to quantify viable Lactobacilli cells is urgently required to evaluate the quality of probiotic-fortified infant formula. This study presents a rapid and accurate method to count viable Lactobacilli cells in infant formula using flow cytometry (FCM). First, Lactobacillus cells were specifically and rapidly stained by oligonucleotide probes based on a signal-enhanced fluorescence in situ hybridization (SEFISH) technique. A DNA-binding fluorescent probe, propidium monoazide (PMA), was then used to accurately recognize viable Lactobacillus cells. The entire process of this newly developed PMA-SEFISH-FCM method was accomplished within 2.5 h, which included pretreatment, dual staining, and FCM analysis; thus, this method showed considerably shorter time-to-results than other rapid methods. This method also demonstrated a good linear correlation (R2 = 0.9994) with the traditional plate-based method with a bacterial recovery rate of 91.24%. To the best of our knowledge, the present study is the first report of FCM combined with PMA and FISH for the specific detection of viable bacterial cells.
Collapse
Affiliation(s)
- Chenglong Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Siyuan Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Ziquan Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Meng Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Huimin Pang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Yingying Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| | - Haiyan Chang
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 10002, China
| |
Collapse
|