1
|
Ning J, Bao X, Chen H, Yan Z, Ding L, Shu C. A highly sensitive and specific fluorescent probe for thrombin detection and high-throughput screening of thrombin inhibitors in complex matrices. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125136. [PMID: 39299075 DOI: 10.1016/j.saa.2024.125136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Thrombin plays a critical role in hemostasis and hemolysis, and is a significant biomarker for blood-related diseases. Detection and inhibitors screening of thrombin are essential in medical research. In this study, we developed a fluorescent sensor based on the interaction between quantum dots (QDs) and fibrinogen (Fib) for thrombin detection and its inhibitors screening. Upon the presence of thrombin, the fibrinogen of soluble QDs-Fib were converted into insoluble fibrin precipitate, causing a change of fluorescence intensity in the supernatant. Under optimized conditions, our method exhibited an excellent linearity (R2 ≥0.99) over the range of 2∼100 U/L with a limit of detection (LOD) as low as 0.29 U/L. Moreover, we employed this method to screen for thrombin inhibitors using dabigatran as an exemplary direct thrombin inhibitor (DTI), even at concentrations as low as 1 nM. Finally, the established method was successfully used to screen thrombin inhibitors in 23 different extracts from Eupolyphaga sinensis walker. The method provided not only a sensitive, specific and high throughput assay for the detection of thrombin activity in biological samples, but also a reliable strategy for the screening of thrombin inhibitors in complex matrices.
Collapse
Affiliation(s)
- Jiangyue Ning
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Xingyan Bao
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Haotian Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Zelong Yan
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Li Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Chang Shu
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
2
|
Yan W, Qin X, Sang X, Zhou X, Zheng Y, Yuan Y, Zhang Y. DNAzyme amplified dispersion state change of gold nanoparticles and its dual optical channels for ultrasensitive and facile detection of lead ion in preserved eggs. Food Chem 2024; 435:137538. [PMID: 37774625 DOI: 10.1016/j.foodchem.2023.137538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
A dual-mode sensing platform for Pb2+ was constructed based on the dual optical channels of Au NPs system with the amplification of DNAzyme, and it was successfully applied for Pb2+ determination in preserved egg with satisfactory results. The presence of Pb2+ activated the DNAzyme and induced the dispersion change of Au NPs in high salt concentration. The sequent absorption change of Au NPs was translated to the fluorescence change of carbon dots through FRET, and the scattering change was transferred to grey value of images involving the Tyndall effect. Thus, a sensing platform based on fluorescence and colorimetric dual-technique was achieved for Pb2+ detection, under the optimized conditions. With the assistance of DNAzyme, the linear range of fluorometric and colorimetric method were 2.0 × 10-14 ∼ 8.0 × 10-10 mol/L and 2.4 × 10-13 ∼ 9.5 × 10-9 mol/L, respectively. The dual-mode sensing platform demonstrated its promising application in the environmental monitoring and food safety field.
Collapse
Affiliation(s)
- Wenju Yan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China; College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Xuefei Qin
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Xueqing Sang
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Xueying Zhou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China; College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Yanying Zheng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China; College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China; College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China; College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| |
Collapse
|
3
|
Li F, Liu KQ, Wang WJ, Jiang ZT, Kong FY, Li HY, Wang ZX, Wang W. Selective identification of p-nitroaniline by bromine-mediated polarization of carbon dots. Analyst 2024; 149:1212-1220. [PMID: 38214602 DOI: 10.1039/d3an02080k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A fluorometric method based on boron, bromide-codoped carbon dots (BBCNs) was developed for the first time for the highly selective detection of p-nitroaniline (PNA) in wastewater samples. It should be noted that the introduction of bromine greatly increases the molecular polarizability of the probe, which can regulate the energy level matching between the probe and PNA, resulting in the interaction between BBCNs and PNA. In the presence of PNA, the fluorescence of BBCNs is obviously quenched and accompanied by a red shift of the fluorescence band, which might be attributed to the formation of aggregates caused by the polar adsorption of BBCNs and PNA. It is beneficial for constructing a highly selective sensing platform for PNA determination compared to its isomers (o-nitroaniline and m-nitroaniline) through atomic bromine-mediated polarization of the BBCNs. With the help of this mechanism, an excellent linear range of 0.5-300 μM with a low detection limit of 0.24 μM toward PNA was obtained. This work further confirms that there is a significant relationship between the nature of doping elements and the optical and physicochemical properties of fluorescent materials.
Collapse
Affiliation(s)
- Feng Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Kai-Qi Liu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Wen-Juan Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Zhen-Tao Jiang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Heng-Ye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Zhong-Xia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
4
|
Zhang J, Xu D, Deng Z, Tan X, Guo D, Qiao Y, Li Y, Hou X, Wang S, Zhang J. Using tungsten oxide quantum-dot enhanced electrochemiluminescence to measure thrombin activity and screen its inhibitors. Talanta 2024; 267:125267. [PMID: 37801928 DOI: 10.1016/j.talanta.2023.125267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023]
Abstract
A thrombin-activity-based electrochemiluminescence (ECL) biosensor was successfully constructed using tungsten oxide quantum dots (WO3-x QDS) as the co-reactant and thrombin-cleavable peptides as the recognizer. Specifically, Ru(bpy)32+ were doped on silica nanoparticles (Ru@SiO2), which greatly enhanced the ECL potential. AuNPs@WO3-x QDs composite was then prepared to accelerate electron transfer and improve the ECL signal by 219 times. Under ideal conditions, the limit of detection for thrombin in serum was determined to be 0.28 μU/mL with a linear range from 1 μU/mL to 1 U/mL. In addition, the developed ECL biosensor was used to screen for thrombin inhibitors from 12 compounds in Artemisiae Argyi Folium. Among the compounds tested, it was observed that 100 μmol/L luteolin exhibited a significantly higher inhibition rate (exceeding 80%) compared to apigenin, isorhamnetin, naringin, or eriodictyol. In an in-vitro anticoagulation experiment, luteolin (100 μmol/L) prolonged APTT by 49%, and the molecular docking assay indicated that luteolin had binding sites of Gly219 and Asp189 in the active pockets of thrombin. This may have been the main reason underpinning luteolin's anticoagulation effects. Overall, the Ru@WO3-x QDS ECL biosensor provided a reliable strategy for thrombin activity assay and screening of anticoagulant agents.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Dan Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Zijie Deng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Xueping Tan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Dongnan Guo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Yanru Qiao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - You Li
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaofang Hou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| | - Junbo Zhang
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
5
|
Jiang X, Liu W, Li Y, Zhu W, Liu H, Wen Y, Bai R, Luo X, Zhang G, Zhao Y. WO 3 nanosheets with peroxidase-like activity and carbon dots based ratiometric fluorescent strategy for xanthine oxidase activity sensing and inhibitor screening. Talanta 2024; 267:125129. [PMID: 37666084 DOI: 10.1016/j.talanta.2023.125129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The abnormal level of xanthine oxidase (XOD) often causes pathological changes, which are related to a series of diseases. Herein, a novel and sensitive ratiometric fluorescent sensing platform based on WO3 nanosheets and carbon dots (CDs) was constructed to detect XOD activity for the first time. Under the catalytic oxidation of xanthine by XOD, hydrogen peroxide (H2O2) was generated. In the presence of H2O2, WO3 nanosheets were able to catalyze the oxidation of o-phenylenediamine to generate 2,3-diaminophenazine (DAP) with a yellow fluorescence signal at 570 nm due to its great peroxidase-like activity. The oxidation product DAP was capable of quenching the fluorescence of CDs at 430 nm through the inner filter effect. Therefore, the fluorescence intensity ratio F570/F430 can be used for quantitative analysis of XOD activity. This assay displayed good linear relationships in the range of 0.005-0.05 U/L and 0.5-40 U/L with a detection limit of 0.002 U/L. In addition, this ratiometric fluorescent sensing platform was successfully applied to the determination of XOD in human serum samples and XOD inhibitor screening, demonstrating significant potential in disease diagnosis and drug-screening applications.
Collapse
Affiliation(s)
- Xinxin Jiang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Weiping Liu
- Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, 643000, Sichuan, China
| | - Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Wanglisha Zhu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yulu Wen
- School of Science, Xihua University, Chengdu, 610039, China
| | - Ruyu Bai
- School of Science, Xihua University, Chengdu, 610039, China
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China.
| |
Collapse
|