1
|
Zhou W, Xiang Y, Yang J, Chen T. Metal ion-complexed DNA probe coupled with CRISPR/Cas12a amplification and AuNPs for sensitive colorimetric assay of metallothionein in fish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124682. [PMID: 38936209 DOI: 10.1016/j.saa.2024.124682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
The accurate and sensitive detection of metallothionein (MT) is of great significance in the fields of biomedical, toxicological and environmental sciences. In this work, based on the high affinity interaction between MT and the heavy metal ions of Hg2+ and the significant signal amplification capability of Cas12a/crRNA enzyme as well, we report a simple and highly sensitive method for visual detection of MT, a biomarker in fish for heavy metal ion-induced water bio-pollution. The target MT molecules bind Hg2+ in the Hg2+- complexed hairpin DNA probes to unfold the hairpin structure into ssDNAs, which hybridize with the partial dsDNA duplexes via strand displacement to yield specific sequence-containing dsDNAs. Cas12a/crRNA recognizes these specific sequences to activate its enzyme activity to cyclically cleave the ssDNA linkers in the blue colored gold nanoparticle aggregates to transit their color into red to realize visual detection of MT. Owing to the signal amplification by Cas12a/crRNA, as low as 25 nM of MT can be visually detected with naked eye. In addition, our colorimetric detection method has high selectivity for MT against other interference proteins and can detect MT in the livers and kidneys of crucian carps bought from a local supermarket. Moreover, the developed assay overcomes the limitations of conventional MT detection methods in terms of complexity, high cost and low sensitivity and can therefore offer new methods for monitoring water bio-pollutions.
Collapse
Affiliation(s)
- Wenjiao Zhou
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Yu Xiang
- Chongqing Yucai Secondary School, Chongqing 400050, PR China
| | - Jirong Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Tiantian Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| |
Collapse
|
2
|
Yan N, Hu Z, Zhang L. CRISPR-Cas13a-Triggered DNAzyme Signal Amplification-Based Colorimetric miRNA Detection Method and Its Application in Evaluating the Anxiety. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04951-1. [PMID: 38652440 DOI: 10.1007/s12010-024-04951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
The development of a bio-sensing strategy based on CRISPR/Cas that is exceptionally sensitive is crucial for the identification of trace molecules. Colorimetric miRNA detection utilizing CRISPR/Cas13a-triggered DNAzyme signal amplification was described in this article. The developed strategy was implemented for miRNA-21 detection as a proof of concept. The cleavage activity of Cas13a was triggered when the target molecule bonded to the Cas13a-crRNA complex and cleaved uracil ribonucleotides (rU) in the substrate probe. As a consequence, the S chain was liberated from the T chain that had been modified on magnetic beads (MB). The G-rich sections were then exposed when the catalytic hairpin assembly between the H1 and H2 probes was activated by the released T@MB. G-rich section can fold into G-quadruplex. By catalyzing the formation of green ABTS3- via HRP-mimicking G-quadruplex/hemin complexes, colorimetric measurements of miRNA can be achieved visually through DNAzyme-mediated signal amplification. The method demonstrated a low limit of detection of 27 fM and a high selectivity towards target miRNA eventually. As a result, the developed strategy provides a clinical application platform for the detection of miRNAs that is both ultrasensitive and extremely specific.
Collapse
Affiliation(s)
- Na Yan
- Department of Stomatology, Hengshui People's Hospital Affiliated to Hebei Medical University, No. 180 Renmin East Road, Hengshui City, 053000, Hebei Province, China.
| | - Zhiwei Hu
- Department of Stomatology, Hengshui People's Hospital Affiliated to Hebei Medical University, No. 180 Renmin East Road, Hengshui City, 053000, Hebei Province, China
| | - Lingling Zhang
- Department of Stomatology, Hengshui People's Hospital Affiliated to Hebei Medical University, No. 180 Renmin East Road, Hengshui City, 053000, Hebei Province, China
| |
Collapse
|
3
|
Yu S, Lei X, Qu C. MicroRNA Sensors Based on CRISPR/Cas12a Technologies: Evolution From Indirect to Direct Detection. Crit Rev Anal Chem 2024:1-17. [PMID: 38489095 DOI: 10.1080/10408347.2024.2329229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
MicroRNA (miRNA) has emerged as a promising biomarker for disease diagnosis and a potential therapeutic targets for drug development. The detection of miRNA can serve as a noninvasive tool in diseases diagnosis and predicting diseases prognosis. CRISPR/Cas12a system has great potential in nucleic acid detection due to its high sensitivity and specificity, which has been developed to be a versatile tool for nucleic acid-based detection of targets in various fields. However, conversion from RNA to DNA with or without amplification operation is necessary for miRNA detection based on CRISPR/Cas12a system, because dsDNA containing PAM sequence or ssDNA is traditionally considered as the activator of Cas12a. Until recently, direct detection of miRNA by CRISPR/Cas12a system has been reported. In this review, we provide an overview of the evolution of biosensors based on CRISPR/Cas12a for miRNA detection from indirect to direct, which would be beneficial to the development of CRISPR/Cas12a-based sensors with better performance for direct detection of miRNA.
Collapse
Affiliation(s)
- Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xueying Lei
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chenling Qu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
He W, Liu X, Na J, Bian H, Zhong L, Li G. Application of CRISPR/Cas13a-based biosensors in serum marker detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1426-1438. [PMID: 38385279 DOI: 10.1039/d3ay01927f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The detection of serum markers is important for the early diagnosis and monitoring of diseases, but conventional detection methods have the problem of low specificity or sensitivity. CRISPR/Cas13a-based biosensors have the characteristics of simple detection methods and high sensitivity, which have a certain potential to solve the problems of conventional detection. This paper focuses on the research progress of CRISPR/Cas13a-based biosensors in serum marker detection, introduces the principles and applications of fluorescence, electrochemistry, colorimetric, and other biosensors based on CRISPR/Cas13a in the detection of serum markers, compares and analyzes the differences between the above CRISPR/Cas13a-based biosensors, and looks forward to the future development direction of CRISPR/Cas13a-based biosensors.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Huimin Bian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Guiyin Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, China
| |
Collapse
|