1
|
Chen C, Zhao M, Guo J, Kuang X, Chen Z, Wang F. Electrochemical detection of FTO with N 3-kethoxal labeling and MazF cleavage. RSC Adv 2024; 14:25561-25570. [PMID: 39144372 PMCID: PMC11322896 DOI: 10.1039/d4ra03989k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
N6-Methyladenosine (m6A) is a prevalent modification in eukaryotic mRNAs and is linked to various human cancers. The fat mass and obesity-associated protein (FTO), a key m6A demethylase, is crucial in m6A regulation, affecting many biological processes and diseases. Detecting FTO is vital for clinical and research applications. Our study leverages the specific cleavage properties of the MazF endoribonuclease to design an electrochemical method with signal amplification guided by streptavidin-horseradish peroxidase (SA-HRP), intended for FTO detection. Initially, the compound N3-kethoxal is employed for its reversible tagging ability, selectively attaching to guanine (G) bases. Subsequently, dibenzocyclooctyne polyethylene glycol biotin (DBCO-PEG4-Biotin), is introduced through a reaction with N3-kethoxal. HRP is then employed to catalyze the redox system to enhance the current response further. A promising linear correlation between the peak current and the FTO concentration was observed within the range of 7.90 × 10-8 to 3.50 × 10-7 M, with a detection limit of 5.80 × 10-8 M. Moreover, this method assessed the FTO inhibitor FB23's inhibitory effect, revealing a final IC50 value of 54.73 nM. This result aligns with the IC50 value of 60 nM obtained through alternative methods and is very close to the values reported in the literature. The study provides reference value for research into obesity, diabetes, cancer, and other FTO-related diseases, as well as for the screening of potential therapeutic drugs.
Collapse
Affiliation(s)
- Chen Chen
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University Wuhan 430071 China +86-27-68759850 +86-27-68759829
| | - Mei Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University Wuhan 430071 China +86-27-68759850 +86-27-68759829
| | - Jingyi Guo
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University Wuhan 430071 China +86-27-68759850 +86-27-68759829
| | - Xia Kuang
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University Wuhan 430071 China +86-27-68759850 +86-27-68759829
| | - Zilin Chen
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University Wuhan 430071 China +86-27-68759850 +86-27-68759829
| | - Fang Wang
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University Wuhan 430071 China +86-27-68759850 +86-27-68759829
| |
Collapse
|
2
|
Gao X, Cao L, Wang L, Liu S, Zhang M, Li C, Waterhouse GIN, Fan H, Xu J. Z-scheme heterojunction g-C 3N 4-TiO 2 reinforced chitosan/poly(vinyl alcohol) film: Efficient and recyclable for fruit packaging. Int J Biol Macromol 2024; 268:131627. [PMID: 38636752 DOI: 10.1016/j.ijbiomac.2024.131627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Nanoparticles-loaded bio-based polymers have emerged as a sustainable substitute to traditional oil-based packaging materials, addressing the challenges of limited recyclability and significant environmental impact. However, the functionality and efficiency of nanoparticles have a significant impact on the application of bio-based composite films. Herein, graphitic carbon nitride (g-C3N4) and titanium dioxide (TiO2) coupled photocatalyst (g-C3N4-TiO2) was prepared by one-step calcination and introduced into chitosan (CS) and polyvinyl alcohol (PVA) solution to fabricate g-C3N4-TiO2/CS/PVA green renewable composite film via solution casting method. The results demonstrated the successful preparation of a Z-scheme heterojunction g-C3N4-TiO2 with exceptional photocatalytic activity. Furthermore, the incorporation of heterojunction enhanced mechanical properties, water barrier, and ultraviolet (UV) resistance properties of the fresh-keeping film. The g-C3N4-TiO2/CS/PVA composite film exhibited superior photocatalytic antibacterial preservation efficacy on strawberries under LED light, with a prolonged preservation time of up to 120 h, when compared to other films such as polyethylene (PE), CS/PVA, g-C3N4/CS/PVA, and TiO2/CS/PVA. In addition, the composite film has good recyclability and renewability. This work is expected to have great potential for low-cost fruit preservation and sustainable packaging, which also contributes to environmental protection.
Collapse
Affiliation(s)
- Xianqiang Gao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China; College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Lulu Cao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Lulu Wang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Shujun Liu
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Mengting Zhang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Changyu Li
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | | | - Hai Fan
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Jing Xu
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| |
Collapse
|
3
|
Shen Q, Zhang Q, Yang Y, Yu X, Zang L, Zhang W, Shen D. Wavelength-dependent photoelectrochemical response demonstrated by the determination of acetaminophen and rutin in differential molecularly imprinted polymers strategy. Talanta 2024; 270:125640. [PMID: 38211357 DOI: 10.1016/j.talanta.2024.125640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Herein, the excitation wavelength-dependent responses of the molecularly imprinted polymer (MIP) photoelectrochemical (PEC) sensors were investigated, using acetaminophen (AP), rutin (RT) and perfluorooctanoate (PFOA) as the model templates, pyrrole as functional monomer, CuInS2@ZnS/TiO2 NTs as the basic photoelectrode. With wavelength λ > 240 nm, the photocurrent of MIPPFOA enhanced at higher concentrations of PFOA. With increasing AP concentration, the photocurrents of MIPAP could decline with λ < 271 nm, not change at λ = 270 nm, or increase with λ > 270 nm. As RT concentration increased, the photocurrents of MIPRT could decrease (λ < 431 nm), not change (λ = 431 nm) or increase (λ > 431 nm). The PEC responses depend on the comprehensive interaction of two contrary mechanisms from the template molecules within the MIP membrane. The photocurrent is enhanced by the role of the electron donor for photo-generated holes but attenuated due to the steric hindrance effect and the excitation light intensity loss via absorption or scattering. The apparent molar absorption coefficient of AP and RT within MIP membranes are 9.1-19.4 folds of those measured from dilute solutions. By using a routine UV lamp as the light source, the photocurrents of MIPRT at 254 nm and MIPAP at 365 nm were used to determine RT and AP, with the detection limits of 5.3 and 16 nM, respectively. The interference from the non-specific adsorption of interferents on the surfaces of MIPAP and MIPRT was reduced by one order of magnitude via a differential strategy.
Collapse
Affiliation(s)
- Qirui Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Qiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Yan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Xifeng Yu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Lixin Zang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|