1
|
Zhang L, Wong CY, Shao H. Integrated technologies for molecular profiling of genetic and modified biomarkers in extracellular vesicles. LAB ON A CHIP 2025. [PMID: 40135945 DOI: 10.1039/d5lc00053j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles actively released by cells into a variety of biofluids. EVs carry myriad molecular cargoes; these include classical genetic biomarkers inherited from the parent cells as well as EV modifications by other entities (e.g., small molecule drugs). Aided by these diverse cargoes, EVs enable long-distance intercellular communication and have been directly implicated in various disease pathologies. As such, EVs are being increasingly recognized as a source of valuable biomarkers for minimally-invasive disease diagnostics and prognostics. Despite the clinical potential, EV molecular profiling remains challenging, especially in clinical settings. Due to the nanoscale dimension of EVs as well as the abundance of contaminants in biofluids, conventional EV detection methods have limited resolution, require extensive sample processing and can lose rare biomarkers. To address these challenges, new micro- and nanotechnologies have been developed to discover EV biomarkers and empower clinical applications. In this review, we introduce EV biogenesis for different cargo incorporation, and discuss the use of various EV biomarkers for clinical applications. We also assess different chip-based integrated technologies developed to measure genetic and modified biomarkers in EVs. Finally, we highlight future opportunities in technology development to facilitate the clinical translation of various EV biomarkers.
Collapse
Affiliation(s)
- Li Zhang
- Institute for Health Innovation & Technology, National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore 117599, Singapore.
| | - Chi Yan Wong
- Institute for Health Innovation & Technology, National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore 117599, Singapore.
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore 117599, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| |
Collapse
|
2
|
Paul D, Bera S, Agrawal T, Karmodak N, Rakshit T. Unveiling the Electrical Properties of Hyaluronan-Coated Cancer Extracellular Vesicles Using Correlative Scanning Probe Microscopy-Based Nano-Electrical Modes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7076-7086. [PMID: 39818745 DOI: 10.1021/acsami.4c17247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Cancer cells produce extracellular vesicles (EVs) coated with an anionic sugar polymer, hyaluronan (HA), in the extracellular matrix. Hyaluronan is an established cancer biomarker in several cancer types. In this work, we thoroughly investigated the electrical properties of HA-coated EVs using advanced scanning probe microscopy (SPM) based nanoelectrical modes, which include EFM (electrostatic force microscopy), KPFM (Kelvin probe force microscopy), PFM (piezoresponse force microscopy) and C-AFM (conductive atomic force microscopy). Analyses revealed distinct properties for different sets of EVs regarding surface potential, charge distribution, and piezoelectric electro-mechanical response at the single-vesicle resolution. The typical electron transport capabilities are primarily driven by ions in sandwiched EV junctions. This correlative approach essentially could distinguish HA-coated cancer EVs (CEVs) from normal EV (NEVs) counterparts. The combined SPM-based nanoelectrical modes offered a multiplexed one-stop label-free solution for EV's electrical property assessments. This strategy is useful in developing EV-based bioelectronic sensors.
Collapse
Affiliation(s)
- Debashish Paul
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi 201314, India
| | - Sudipta Bera
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tanya Agrawal
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi 201314, India
| | - Naiwrit Karmodak
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi 201314, India
| | - Tatini Rakshit
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi 201314, India
| |
Collapse
|
3
|
Rejas-González R, Montero-Calle A, Pastora Salvador N, Crespo Carballés MJ, Ausín-González E, Sánchez-Naves J, Pardo Calderón S, Barderas R, Guzman-Aranguez A. Unraveling the nexus of oxidative stress, ocular diseases, and small extracellular vesicles to identify novel glaucoma biomarkers through in-depth proteomics. Redox Biol 2024; 77:103368. [PMID: 39326071 PMCID: PMC11462071 DOI: 10.1016/j.redox.2024.103368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Chronic ocular pathologies such as cataracts and glaucoma are emerging as an important problem for public health due to the changes in lifestyle and longevity. These age-related ocular diseases are largely mediated by oxidative stress. Small extracellular vesicles (sEVs) are involved in cell-to-cell communication and transport. There is an increasing interest about the function of small extracellular vesicles (sEVs) in the eye. However, the proteome content and characterization of sEVs released by ocular cells under pathological conditions are not yet well known. Here, we aimed to analyze the protein profile of sEVs and the intracellular protein content from two ocular cell lines (lens epithelial cells and retinal ganglion cells) exposed to oxidative stress to identify altered proteins that could serve as potential diagnostic biomarkers. The protein content was analyzed by quantitative mass spectrometry-based proteomics. Validation was performed by WB and ELISA using cell extracts and aqueous humor from cataract and glaucoma patients. After data analysis, 176 and 7 dysregulated proteins with an expression ratio≥1.5 were identified in lens epithelial cells' protein extract and sEVs, respectively, upon oxidative stress induction. In retinal ganglion cells, oxidative stress induction resulted in the dysregulation of 1033 proteins in cell extracts and 9 proteins in sEVs. In addition, by WB and ELISA, the dysregulation of proteins was mostly confirmed in aqueous humor samples from cataract or glaucoma patients in comparison to ICL individuals, with RAD23B showing high glaucoma diagnostic ability. Importantly, this work expands the knowledge of the proteome characterization of cataracts and glaucoma and provides new potential diagnostic glaucoma biomarkers.
Collapse
Affiliation(s)
- Raquel Rejas-González
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | | | | | - Emma Ausín-González
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | | | - Sara Pardo Calderón
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), 28029, Madrid, Spain.
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain.
| |
Collapse
|
4
|
Martínez-García J, Villa-Vázquez A, Fernández B, González-Iglesias H, Pereiro R. Exploring capabilities of elemental mass spectrometry for determination of metal and biomolecules in extracellular vesicles. Anal Bioanal Chem 2024; 416:2595-2604. [PMID: 37999724 PMCID: PMC11009778 DOI: 10.1007/s00216-023-05056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Extracellular vesicles (EVs) are increasingly recognized as crucial components influencing various pathophysiological processes, such as cellular homeostasis, cancer progression, and neurological disease. However, the lack of standardized methods for EV isolation and classification, coupled with ambiguity in biochemical markers associated with EV subtypes, remains a major challenge. This Trends article highlights the most common approaches for EV isolation and characterization, along with recent applications of elemental mass spectrometry (MS) to analyse metals and biomolecules in EVs obtained from biofluids or in vitro cellular models. Considering the promising capabilities of elemental MS, the article also looks ahead to the potential analysis of EVs at the single-vesicle and single-cell levels using ICP-MS. These approaches may offer valuable insights into individual characteristics of EVs and their functions, contributing to a deeper understanding of their role in various biological processes.
Collapse
Affiliation(s)
- Jaime Martínez-García
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| | - Alicia Villa-Vázquez
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain.
| | - Héctor González-Iglesias
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Spain
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|