1
|
Yoon J, Lee J, Kim J, Lee SM, Kim S, Park HG. A novel ultrasensitive RNase H assay based on phosphorothioated-terminal hairpin formation and self-priming extension reaction. Biosens Bioelectron 2024; 253:116174. [PMID: 38432074 DOI: 10.1016/j.bios.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
We herein present a novel ultrasensitive RNase H assay based on phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP) reaction. The detection probe employed as a key component in this technique serves as a substrate for RNase H and triggers the PS-THSP reaction upon the RNase H-mediated degradation of the probe. As a consequence, a large number of long concatemeric amplification products could be produced and used to identify the RNase H activity through the fluorescence signals produced by the nucleic acid-specific fluorescent dye, SYTO 9. Importantly, the use of the gp32 protein allowed the PS-THSP reaction to be performed at 37 °C, ultimately enabling an isothermal one-step RNase H assay. Based on this sophisticated design principle, the RNase H activity was very sensitively detected, down to 0.000237 U mL-1 with high specificity. We further verified its practical applicability through its successful application to the screening of RNase H inhibitors. With its operational convenience and excellent analytical performance, this technique could serve as a new platform for RNase H assay in a wide range of biological applications.
Collapse
Affiliation(s)
- Junhyeok Yoon
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jinhwan Lee
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jaemin Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang Mo Lee
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Soohyun Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Bai H, Liu Y, Gao L, Wang T, Zhang X, Hu J, Ding L, Zhang Y, Wang Q, Wang L, Li J, Zhang Z, Wang Y, Shen C, Ying B, Niu X, Hu W. A portable all-in-one microfluidic device with real-time colorimetric LAMP for HPV16 and HPV18 DNA point-of-care testing. Biosens Bioelectron 2024; 248:115968. [PMID: 38150799 DOI: 10.1016/j.bios.2023.115968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Screening for high-risk human papillomavirus (HPV) infection is one of the most important preventative measures for cervical cancer. However, fast, convenient, and low-cost HPV detection remains challenging, especially in resource-limited settings. Here, we report a portable all-in-one device (PAD) for point-of-care testing (POCT) for HPV16 and HPV18 DNA in cervical swabs. The PAD was engineered to integrate modules for extraction-free sample lysis, loop-mediated isothermal amplification (LAMP) with lyophilized reagent beads, and real-time colorimetric signal sensing into a single miniaturized device, considerably shortening the sample-to-result time to 15 min. The precision liquid handling in the completely sealed microfluidic chip is achieved by a uniquely designed pressure-balanced automatic liquid flow mechanism, thereby eliminating the need for manual manipulation of liquids and thus the risk of biohazards. The PAD employs an improved real-time colorimetric LAMP (rcLAMP) assay with a limit of detection (LOD) of 1 copy/μL, enabled by enhanced assay chemistry to maximize the reaction kinetics. To validate this device for clinical application, we tested 206 clinical cervical swab samples and obtained a sensitivity of 92.1% and a specificity of 99.0%. This custom PAD enabled by microfluidic and electronic engineering techniques can be configured for the simultaneous detection of HPV16 and HPV18 or other pathogens in point-of-care applications.
Collapse
Affiliation(s)
- Hao Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqing Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Linbo Gao
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoli Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Hu
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China; Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lisha Ding
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yueting Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Qian Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Wang
- One-Chip Biotechnology Co. Ltd, Chengdu, 610041, China
| | - Jianlong Li
- One-Chip Biotechnology Co. Ltd, Chengdu, 610041, China
| | - Zhifeng Zhang
- One-Chip Biotechnology Co. Ltd, Chengdu, 610041, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Chenlan Shen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiaoyu Niu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wenchuang Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China; Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|