1
|
Huang X, Huang J, Lu M, Liu Y, Jiang G, Chang M, Xu W, Dai Z, Zhou C, Hong P, Li C. In situ surface-enhanced Raman spectroscopy for the detection of nanoplastics: A novel approach inspired by the aging of nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174249. [PMID: 38936740 DOI: 10.1016/j.scitotenv.2024.174249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/29/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Nanoplastics (NPs) present a hidden risk to organisms and the environment via migration and enrichment. Detecting NPs remains challenging because of their small size, low ambient concentrations, and environmental variability. There is an urgency to exploit detection approaches that are more compatible with real-world environments. Herein, this study provides a surface-enhanced Raman spectroscopy (SERS) technique for the in situ reductive generation of silver nanoparticles (Ag NPs), which is based on photoaging-induced modifications in NPs. The feasibility of generating Ag NPs on the surface of NPs was derived by exploring the photoaging mechanism, which was then utilized to SERS detection. The approach was applied successfully for the detection of polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET) NPs with excellent sensitivity (e.g., as low as 1 × 10-6 mg/mL for PVC NPs, and an enhancement factor (EF) of up to 2.42 × 105 for small size PS NPs) and quantitative analytical capability (R2 > 0.95579). The method was successful in detecting NPs (PS NPs) in lake water. In addition, satisfactory recoveries (93.54-105.70 %, RSD < 12.5 %) were obtained by spiking tap water as well as lake water, indicating the applicability of the method to the actual environment. Therefore, the proposed approach offers more perspectives for testing real environmental NPs.
Collapse
Affiliation(s)
- Xiaoxin Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Jinchan Huang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Meilin Lu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Liu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangzheng Jiang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Min Chang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wenhui Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Zhenqing Dai
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Li H, Lee LM, Yu D, Chan SH, Li A. An optimized multi-technique based analytical platform for identification, characterization and quantification of nanoplastics in water. Talanta 2024; 272:125800. [PMID: 38394751 DOI: 10.1016/j.talanta.2024.125800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/30/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Nanoplastics (NPs) have been identified as an emerging concern for the environment and our food chains in recent years. Monitoring the concentration and size of nanoplastics is essential to assess the potential risks that nanoplastic particles may pose. In this study, we presented a multi-technique based analytical platform to identify, characterize and quantify nanoplastics in water samples through a combination of sample pre-concentration, asymmetric flow field-flow fractionation coupled with multi-angle light scattering (AF4-MALS) and pyrolysis-GC/MS (Py-GC/MS). Models for predicting NPs concentration and particle number in unknown samples were established and validated using NPs standards of known size and AF4-MALS response. Py-GC/MS was applied for further identification of polymer type and quantification of mass concentration. Filtration conditions for pre-concentration were optimized to ensure a high recovery rate with minimal effect on original particle size. The addition of 0.05% SDS prior to filtration, using controlled filtration procedures, effectively improved the recovery. Furthermore, this study demonstrates the application of the analytical platform for the characterization and quantification of different nanoparticles (e.g. spiked PMMA and PS NPs) in the size range 60 nm-350 nm with detection limits down to 0.01 ppm in water samples. The established analytical platform can fill an analytical gap by offering a solution for quantifying size-resolved mass concentrations of nanoplastics and providing comprehensive data on size distribution, particle number and mass quantification with high sensitivity for detection.
Collapse
Affiliation(s)
- Haiyan Li
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Lin Min Lee
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Dingyi Yu
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore.
| | - Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Angela Li
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| |
Collapse
|
3
|
Ye Q, Wu Y, Liu W, Ma X, He D, Wang Y, Li J, Wu W. Identification and quantification of nanoplastics in different crops using pyrolysis gas chromatography-mass spectrometry. CHEMOSPHERE 2024; 354:141689. [PMID: 38492677 DOI: 10.1016/j.chemosphere.2024.141689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Quantitative studies of nanoplastics (NPs) abundance on agricultural crops are crucial for understanding the environmental impact and potential health risks of NPs. However, the actual extent of NP contamination in different crops remains unclear, and therefore insufficient quantitative data are available for adequate exposure assessments. Herein, a method with nitric acid digestion, multiple organic extraction combined with pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) quantification was used to determine the chemical composition and mass concentration of NPs in different crops (cowpea, flowering cabbage, rutabagas, and chieh-qua). Recoveries of 74.2-109.3% were obtained for different NPs in standard products (N = 6, RSD <9.6%). The limit of detection (LOD) and the limit of quantitation (LOQ) were 0.02-0.5 μg and 0.06-1.5 μg, respectively. The detection method for NPs exhibited good external calibration curves and linearity with 0.99. The results showed that poly (vinylchloride) (PVC), poly (ethylene terephthalate) (PET), polyethylene (PE), and polyadiohexylenediamine (PA66) NPs could be detected in crop samples, although the accumulation levels associated with the various crops varied significantly. PVC (N.D.-954.3 mg kg-1, dry weight (DW)) and PE (101.3-462.9 mg kg-1, DW) NPs were the dominant components in the samples of all four crop species, while high levels of PET (414.3-1430.1 mg kg-1, DW) NPs were detected in cowpea samples. Furthermore, there were notable differences in the accumulation levels of various edible crop parts, such as stems (60.2%) > leaves (39.8%) in flowering cabbage samples and peas (58.8%) > pods (41.2%) in cowpea samples. This study revealed the actual extent of NP contamination in different types of crops and provided crucial reference data for future research.
Collapse
Affiliation(s)
- Quanyun Ye
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Yingxin Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China.
| | - Wangrong Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Xiaorui Ma
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Dechun He
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Yuntao Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Junfei Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China.
| |
Collapse
|
4
|
Xu S, Li H, Xiao L, Wang M, Feng S, Fan J, Pawliszyn J. Quantitative Determination of Poly(methyl Methacrylate) Micro/Nanoplastics by Cooling-Assisted Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry: Theoretical and Experimental Insights. Anal Chem 2024; 96:2227-2235. [PMID: 38272489 DOI: 10.1021/acs.analchem.3c05316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Determinations of micro/nanoplastics (MNPs) in environmental samples are essential to assess the extent of their presence in the environment and their potential impact on ecosystems and human health. With the aim to provide a sensitive method with simplified pretreatment steps, cooling-assisted solid-phase microextraction (CA-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) is proposed as a new approach to quantify mass concentrations of MNPs in water and soil samples. The herein proposed CA-SPME method offers the unique advantage of integrating the thermal decomposition of MNPs and enrichment of signature compounds into one step. Poly(methyl methacrylate) (PMMA) was used as a model substance to verify the method performance in this work. Theoretical insights demonstrated that pyrolysis is the rate-determining step during the extraction process and that PMMA is effectively decomposed at 350 °C with an estimated incubation time of 13 min. Eight compounds were identified in the pyrolysis products by CA-SPME-GC-MS with the use of a DVB/CAR/PDMS coating, wherein methyl methacrylate was considered as the best indicator and dimethyl 2-methylenesuccinate was selected as the confirmation compound. Under the optimized conditions, the proposed method exhibited wide linearity (0.5-2000 μg for water and 5-1000 μg for soil) and high sensitivity, with limits of detection of 0.014 and 0.28 μg for water and soil, respectively. Finally, the proposed method was successfully applied for determinations of PMMA MNPs in real water and soil samples with satisfactory recoveries attained. The method only required the employment of a filter membrane for water analysis, while soil samples were analyzed directly without any pretreatment. The solvent-free approach, straightforward operation, and high sensitivity of the proposed method show great potential for the analysis of MNPs in different environmental samples.
Collapse
Affiliation(s)
- Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Huimin Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Li Xiao
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, P. R. China
| | - Miaomiao Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Jing Fan
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, P. R. China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
5
|
Li Y, Zhao L, An Y, Qin L, Qiao Z, Chen D, Li Y, Geng H, Yang Y. Bibliometric analysis and systematic review of the adherence, uptake, translocation, and reduction of micro/nanoplastics in terrestrial plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167786. [PMID: 37848143 DOI: 10.1016/j.scitotenv.2023.167786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Micro/nanoplastics are emerging agricultural pollutants globally. Micro/nanoplastics can adhere to terrestrial plant surfaces, be absorbed and transported by plants, and accumulate in the edible parts of plants, leading to the possibility of enrichment and transmission through the food chain and threatening human health. However, the underlying mechanism remains unclear. With increased studies on the internalization of micro/nanoplastics in terrestrial plants, a comprehensive and systematic review summarizing the current research trends and progress is warranted to provide a reference for further relevant research. Based on bibliometric analysis, this study focused on the mechanisms, study methods, and reduction techniques of micro/nanoplastics adherence, uptake, and translocation by terrestrial plants. The results showed that micro/nanoplastics can adhere to the surfaces of plant tissues such as seeds, roots, and leaves. Root uptake (root-to-leaf translocation) and foliar uptake (leaf-to-root translocation) are the two simultaneous internalization pathways of MNPs in plants. The observation methods included scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS), and inductively coupled plasma-mass spectrometry (ICP-MS). We highlighted the necessity and urgency of reducing the uptake and translocation of MNPs by plants and found that the application of silicon may be a promising approach for reducing internalization. This study identifies current knowledge gaps and proposes possible future needs.
Collapse
Affiliation(s)
- Yang Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Yi An
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Li Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zhi Qiao
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Daying Chen
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Yihan Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Hongzhi Geng
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
6
|
Li Y, Lin X, Wang J, Xu G, Yu Y. Mass-based trophic transfer of polystyrene nanoplastics in the lettuce-snail food chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165383. [PMID: 37422223 DOI: 10.1016/j.scitotenv.2023.165383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
To investigate the potential transfer of nanoplastics (NPs) from water to plants and subsequently to a higher trophic level, we established a food chain and evaluated the trophic transfer of polystyrene (PS) NPs based on mass concentrations by pyrolysis gas chromatography-mass spectrometry. Lettuce plants were cultivated in Hoagland solution with varying concentrations of PS-NPs (0.1, 1, 10, 100 and 1000 mg/L) for a period of 60 d and then a total of 7 g lettuce shoot was fed to snails for 27 d. Shoot biomass exposed at 1000 mg/L PS-NPs was reduced by 36.1 %. No significant change in root biomass was observed, however, root volume was reduced by 25.6 % at 100 mg/L. Moreover, PS-NPs were detected in both lettuce roots and shoots across all concentrations. Additionally, PS-NPs were transferred to snails and primarily found in feces (>75 %). Only 28 ng/g of PS-NPs were detected in the soft tissue of snails indirectly exposed at 1000 mg/L. Although PS-NPs were bio-diluted when transferred to species at higher trophic levels, they significantly inhibited the growth of snails, indicating that their potential risk to high trophic levels cannot be ignored. This study provides key information on trophic transfer and patterns of PS-NPs in food chains and helps to evaluate risk of NPs in terrestrial ecosystem.
Collapse
Affiliation(s)
- Yanjun Li
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Lin
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|