Bratei AA, Stefan-van Staden RI, Ilie-Mihai RM, Gheorghe DC. Simultaneous Assay of CA 72-4, CA 19-9, CEA and CA 125 in Biological Samples Using Needle Three-Dimensional Stochastic Microsensors.
SENSORS (BASEL, SWITZERLAND) 2023;
23:8046. [PMID:
37836876 PMCID:
PMC10575467 DOI:
10.3390/s23198046]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Two-needle 3D stochastic microsensors based on boron- and nitrogen-decorated gra-phenes, modified with N-(2-mercapto-1H-benzo[d]imidazole-5-yl), were designed and used for the molecular recognition and quantification of CA 72-4, CA 19-9, CEA and CA 125 biomarkers in biological samples such as whole blood, urine, saliva and tumoral tissue. The NBGr-2 sensor yielded lower limits of determination. For CEA, the LOD was 4.10 × 10-15 s-1 g-1 mL, while for CA72-4, the LOD was 4.00 × 10-11 s-1 U-1 mL. When the NBGr-1 sensor was employed, the best results were obtained for CA12-5 and CA19-9, with values of LODs of 8.37 × 10-14 s-1 U-1 mL and 2.09 × 10-13 s-1 U-1 mL, respectively. High sensitivities were obtained when both sensors were employed. Broad linear concentration ranges favored their determination from very low to higher concentrations in biological samples, ranging from 8.37 × 10-14 to 8.37 × 103 s-1 U-1 mL for CA12-5 when using the NBGr-1 sensor, and from 4.10 × 10-15 to 2.00 × 10-7 s-1 g-1 mL for CEA when using the NBGr-2 sensor. Student's t-test showed that there was no significant difference between the results obtained utilizing the two microsensors for the screening tests, at a 99% confidence level, with the results obtained being lower than the tabulated values.
Collapse