1
|
Manavalan S, Thiruppathi M, Senthil C, Kim SS, Jung HY, Jung SM. Controllable construction of γ-Fe 2O 3 nanocubes anchored on carbon nanotube nanoribbons; boosting electrocatalytic activity for organic pollutant detection in vegetables. Food Chem 2025; 470:142725. [PMID: 39764887 DOI: 10.1016/j.foodchem.2024.142725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/22/2024] [Accepted: 12/29/2024] [Indexed: 01/30/2025]
Abstract
Developing a highly efficient electrocatalyst for detecting hazardous bisphenol S (BPS) is essential to minimize health risks. Herein, we fabricate γ-Fe2O3 nanocubes (IONCs) anchored on carbon nanotube nanoribbons (CNRs) (denoted as IONCs-CNRs) for the electrochemical detection of BPS in vegetables. Importantly, the IONCs can be selectively formed only on CNRs via amperometric deposition, while γ-Fe2O3 cubic clusters (IOCCs) form in the absence of CNRs. This results in a remarkable 300 % increase in electrocatalytic activity compared to that exhibited by IOCCs. As a result, the IONCs-CNRs sensor exhibits high sensitivity (S = 14.7548 μAμM-1 cm-2), a low detection limit of 1.9 nM, and good selectivity for BPS detection. Moreover, the sensor shows a good recovery rate of 96.23 to 99.95 % in detecting BPS in vegetable samples. The controlled IONCs-CNRs, with enhanced catalytic activity, represent a promising electrocatalyst for the on-site detection of trace amounts of BPS in food safety applications.
Collapse
Affiliation(s)
- Shaktivel Manavalan
- Center for Ecotoxicology and Environmental Future Research, Korea Institute of Toxicology, Jinju-si, Gyeongnam 52834, Republic of Korea
| | - Murugan Thiruppathi
- Center for Ecotoxicology and Environmental Future Research, Korea Institute of Toxicology, Jinju-si, Gyeongnam 52834, Republic of Korea
| | - Chenrayan Senthil
- Future Convergence Technology Research Institute, Gyeongsang National University (GNU), Jinju-si, Gyeongnam 52849, South Korea
| | - Sun-Sik Kim
- Department of Energy Engineering, Gyeongsang National University (GNU), Jinju-si, Gyeongnam 52725, Republic of Korea
| | - Hyun Young Jung
- Future Convergence Technology Research Institute, Gyeongsang National University (GNU), Jinju-si, Gyeongnam 52849, South Korea.; Department of Energy Engineering, Gyeongsang National University (GNU), Jinju-si, Gyeongnam 52725, Republic of Korea
| | - Sung Mi Jung
- Center for Ecotoxicology and Environmental Future Research, Korea Institute of Toxicology, Jinju-si, Gyeongnam 52834, Republic of Korea.
| |
Collapse
|
2
|
Lin S, Lv YK, Zhu A, Su M, Li X, Liang SX. Development of a NiFe 2O 4 covalent organic framework based magnetic solid-phase extraction approach for specific capture of quinolones in animal innards prior to UHPLC-Q-Orbitrap HRMS detection. Food Chem 2024; 454:139796. [PMID: 38797102 DOI: 10.1016/j.foodchem.2024.139796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/31/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
This study aimed to present a selective and effective method for analyzing quinolones (QNs) in food matrix. Herein, a NiFe2O4-based magnetic sodium disulfonate covalent organic framework (NiFe2O4/COF) was prepared using a simple solvent-free grinding method, and was adopted as a selective adsorbent for magnetic solid phase extraction of QNs. Coupled with UHPLC-Q-Orbitrap HRMS, an efficient method for simultaneous detection of 18 kinds of QNs was established. The method exhibited good linearity (0.01-100 ng g-1), high sensitivity (LODs ranging from 0.0011 to 0.0652 ng g-1) and precision (RSDs below 9.5%). Successful extraction of QNs from liver and kidney samples was achieved with satisfactory recoveries ranging from 82.2% to 108.4%. The abundant sulfonate functional groups on NiFe2O4/COF facilitated strong affinity to QNs through electrostatic and hydrogen bonding interactions. The proposed method provides a new idea for the extraction of contaminants with target selectivity.
Collapse
Affiliation(s)
- Shumin Lin
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China; Analysis and Testing Center, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| | - Yun-Kai Lv
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding 071002, PR China
| | - Aixue Zhu
- Large Scale Instruments Shared Service Platform, Hebei University, Baoding 071002, PR China
| | - Ming Su
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding 071002, PR China
| | - Xiliang Li
- School of Public Health, Hebei University, Baoding 071002, China
| | - Shu-Xuan Liang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding 071002, PR China.
| |
Collapse
|
3
|
DeFord L, Yoon JY. Soil microbiome characterization and its future directions with biosensing. J Biol Eng 2024; 18:50. [PMID: 39256848 PMCID: PMC11389470 DOI: 10.1186/s13036-024-00444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Soil microbiome characterization is typically achieved with next-generation sequencing (NGS) techniques. Metabarcoding is very common, and meta-omics is growing in popularity. These techniques have been instrumental in microbiology, but they have limitations. They require extensive time, funding, expertise, and computing power to be effective. Moreover, these techniques are restricted to controlled laboratory conditions; they are not applicable in field settings, nor can they rapidly generate data. This hinders using NGS as an environmental monitoring tool or an in-situ checking device. Biosensing technology can be applied to soil microbiome characterization to overcome these limitations and to complement NGS techniques. Biosensing has been used in biomedical applications for decades, and many successful commercial products are on the market. Given its previous success, biosensing has much to offer soil microbiome characterization. There is a great variety of biosensors and biosensing techniques, and a few in particular are better suited for soil field studies. Aptamers are more stable than enzymes or antibodies and are more ready for field-use biosensors. Given that any microbiome is complex, a multiplex sensor will be needed, and with large, complicated datasets, machine learning might benefit these analyses. If the signals from the biosensors are optical, a smartphone can be used as a portable optical reader and potential data-analyzing device. Biosensing is a rich field that couples engineering and biology, and applying its toolset to help advance soil microbiome characterization would be a boon to microbiology more broadly.
Collapse
Affiliation(s)
- Lexi DeFord
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
4
|
Qin X, Yin P, Zhang Y, Su M, Chen F, Xu X, Zhao J, Gui Y, Guo H, Zhao C, Zhang Z. Self-assembled ordered AuNRs-modified electrodes for simultaneous determination of dopamine and topotecan with improved data reproducibility. Mikrochim Acta 2024; 191:350. [PMID: 38806865 DOI: 10.1007/s00604-024-06441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Gold nanomaterials have been widely explored in electrochemical sensors due to their high catalytic property and good stability in multi-medium. In this paper, the reproducibility of the signal among batches of gold nanorods (AuNRs)-modified electrodes was investigated to improve the data stabilization and repeatability. Ordered and random self-assembled AuNRs-modified electrodes were used as electrochemical sensors for the simultaneous determination of dopamine (DA) and topotecan (TPC), with the aim of obtaining an improved signal stability in batches of electrodes and realizing the simultaneous determination of both substances. The morphology and structure of the assemblies were analyzed and characterized by UV-Vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). Electrochemical studies showed that the ordered AuNRs/ITO electrodes have excellent signal reproducibility among several individuals due to the homogeneous mass transfer in the ordered arrangement of the AuNRs. Under the optimized conditions, the simultaneous detection results of DA and TPC showed good linearity in the ranges 1.75-45 μM and 1.5-40 μM, and the detection limits of DA and TPC were 0.06 μM and 0.17 μM, respectively. The results showed that the prepared ordered AuNR/ITO electrode had high sensitivity, long-term stability, and reproducibility for the simultaneous determination of DA and TPC, and it was expected to be applicable for real sample testing.
Collapse
Affiliation(s)
- Xiaoyun Qin
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Peijun Yin
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Yuhang Zhang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Mingxing Su
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Fenghua Chen
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Xinru Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jianbo Zhao
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Yanghai Gui
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Huishi Guo
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Chao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
Jin S, Chen H, Pan K, Li R, Ma X, Yuan R, Meng X, He H. State-of-the-art electrochemical biosensors based on covalent organic frameworks and their hybrid materials. Talanta 2024; 270:125557. [PMID: 38128284 DOI: 10.1016/j.talanta.2023.125557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
As the development of global population and industry civilization, the accurate and sensitive detection of intended analytes is becoming an important and great challenge in the field of environmental, medical, and public safety. Recently, electrochemical biosensors have been constructed and used in sensing fields, such as antibiotics, pesticides, specific markers of cancer, and so on. Functional materials have been designed and prepared to enhance detection performance. Among all reported materials, covalent organic frameworks (COFs) are emerging as porous crystalline materials to construct electrochemical biosensors, because COFs have many unique advantages, including large surface area, high stability, atom-level designability, and diversity, to achieve a far better sensing performance. In this comprehensive review, we not only summarize state-of-the-art electrochemical biosensors based on COFs and their hybrid materials but also highlight and discuss some typical examples in detail. We finally provide the challenge and future perspective of COFs-based electrochemical biosensors.
Collapse
Affiliation(s)
- Shi Jin
- Department of Basic Science, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Hongxu Chen
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, 314001, PR China.
| | - Kexuan Pan
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Ruyu Li
- Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Xingyu Ma
- Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Rongrong Yuan
- Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Xianshu Meng
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, PR China
| | - Hongming He
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, PR China.
| |
Collapse
|
6
|
Guo H, Yang Z, Sun L, Lu Z, Wei X, Wang M, Yu Z, Yang W. Imine-linked covalent organic framework with high crystallinity for constructing sensitive purine bases electrochemical sensor. J Colloid Interface Sci 2024; 659:639-649. [PMID: 38198941 DOI: 10.1016/j.jcis.2023.12.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
In this work, a covalent organic framework (TADM-COF) with high crystallinity and large specific surface area (2597 m2 g-1) has been successfully synthesized using 1,3,5-(4-aminophenyl) benzene (TAPB) and 2,5-dimethoxy-p-phenyldiformaldehyde (DMTP). The COF was grown in situ on oxide particles to form core-shell nanocomposites (SiO2@TADM COF, Fe3O4@TADM COF and Co3O4@TADM COF) to realize its function as a shell material. Among them, the Co3O4@TADM COF with the highest electrochemical response to purine bases was further cross-linked with multi-walled carbon nanotubes (MWCNT) to construct a novel electrochemical sensor (Co3O4@TADM COF/MWCNT/GCE) for detection of purine bases. In this nanocomposite, Co3O4 possesses rich catalytic active sites, MWCNT ensures superior electrical conductivity and COF provides a stable environment for electrocatalytic reactions as the shell. At the same time, regular pore structure of the COFs also offers smooth channels for the transfer of analytes to the catalytic site. The synergistic effect among the three components showed remarkable sensing performance for the simultaneous detection of guanine (G) and adenine (A) with a wide linear range of 0.6-180 μM and low limits of detection (LODs) of 0.020 μM for G and 0.024 μM for A (S/N = 3), respectively. The developed sensor platform was also successfully applied in the detection of purine bases in thermally denatured herring DNA extract. The work provided a general strategy for amplifying signal of COF and its composite in the electrochemical sensing.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Zeyun Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Lei Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Zongyan Lu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Xiaoqin Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Mingyue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Zhiguo Yu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| |
Collapse
|
7
|
Katiyar D, Manish, Pal RS, Bansal P, Kumar A, Prakash S. Electrochemical Sensors for Detection of Phytomolecules: A Mechanistic Approach. Comb Chem High Throughput Screen 2024; 27:1887-1899. [PMID: 38279749 DOI: 10.2174/0113862073282883231218145941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 01/28/2024]
Abstract
High demand and ongoing technological advancements have created a market for sensors that is both varied and rapidly evolving. Bioactive compounds are separated systematically to conduct an in-depth investigation, allowing for the profiling or fingerprinting of different Plantae kingdoms. The profiling field is significant in elucidating the complex interplay of plant traits, attributes, and environmental factors. Flexible technology advancements have enabled the creation of highly sensitive sensors for the non-destructive detection of molecules. Additionally, very specialized integrated systems that will allow multiplexed detection by integrating many hybrid approaches have been developed, but these systems are highly laborious and expensive. Electrochemical sensors, on the other hand, are a viable option because of their ability to accomplish exact compound detection via efficient signal transduction. However, this has not been investigated because of some obstacles to learning minimum metabolites' fundamentals and nonredox properties. This article reviews the electrochemical basis of plants, contrasting it with more conventional techniques and offering both positive and negative perspectives on the topic. Because few studies have been devoted to the concept of merging the domains, we've expanded the scope of this work by including pertinent non-phytochemical reports for better report comparison.
Collapse
Affiliation(s)
- Deepti Katiyar
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Manish
- Department of Electronics and Communication Engineering, ABES Engineering College, 19th KM Stone, NH-09 Ghaziabad, 201009, Uttar Pradesh, India
| | - Rashmi Saxena Pal
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Priya Bansal
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Abhishek Kumar
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Surya Prakash
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
8
|
Daum JP, Ajnsztajn A, Iyengar SA, Lowenstein J, Roy S, Gao GH, Tsai EHR, Ajayan PM, Verduzco R. Solutions Are the Problem: Ordered Two-Dimensional Covalent Organic Framework Films by Chemical Vapor Deposition. ACS NANO 2023; 17:21411-21419. [PMID: 37871166 DOI: 10.1021/acsnano.3c06142] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Covalent organic frameworks (COFs) are a promising class of crystalline polymer networks that are useful due to their high porosity, versatile functionality, and tunable architecture. Conventional solution-based methods of producing COFs are marred by slow reactions that produce powders that are difficult to process into adaptable form factors for functional applications, and there is a need for facile and fast synthesis techniques for making crystalline and ordered covalent organic framework (COF) thin films. In this work, we report a chemical vapor deposition (CVD) approach utilizing co-evaporation of two monomers onto a heated substrate to produce highly crystalline, defect-free COF films and coatings with hydrazone, imine, and ketoenamine COF linkages. This all-in-one synthesis technique produces highly crystalline, 40 nm-1 μm-thick COF films on Si/SiO2 substrates in less than 30 min. Crystallinity and alignment were proven by using a combination of grazing-incidence wide-angle X-ray scattering (GIWAXS) and transmission electron microscopy (TEM), and successful conversion of the monomers to produce the target COF was supported by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV-vis measurements. Additionally, we used atomic force microscopy (AFM) to investigate the growth mechanisms of these films, showing the coalescence of triangular crystallites into a smooth film. To show the wide applicability and scope of the CVD process, we also prepared crystalline ordered COF films with imine and ketoenamine linkages. These films show potential as high-quality size exclusion membranes, catalytic platforms, and organic transistors.
Collapse
Affiliation(s)
- Jeremy P Daum
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Alec Ajnsztajn
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Sathvik Ajay Iyengar
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Jacob Lowenstein
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Soumyabrata Roy
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Guan-Hui Gao
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Pulickel M Ajayan
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Rafael Verduzco
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|