1
|
Zou YL, Liu YT. A novel isophorone-based NIR fluorescent and colormetric probe for Al 3+ sensing and its application for living cells and plants imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124040. [PMID: 38428211 DOI: 10.1016/j.saa.2024.124040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 03/03/2024]
Abstract
In this paper, an isophorone-based NIR fluorescent and colormetric probe BDDH for Al3+ was synthesized and characterized, it showed highly selectivity and sensitivity through significant fluorescence enhancement and visible color change towards Al3+. The job plot confirmed that the binding ratio of BDDH with Al3+ was 1:1. Furthermore, the limit of detection (LOD) of Al3+ was determined to be 4.01 × 10-8 M. Moreover, BDDH was successfully applicated in identification of Al3+ in the different water samples, cell imaging in alive MCF-7 cells and plant imaging in soybean roots.
Collapse
Affiliation(s)
- Yue-Li Zou
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ya-Tong Liu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Sangsuwan W, Faikhruea K, Supabowornsathit K, Sangsopon D, Ingrungruanglert P, Chuntakaruk H, Nuntavanotayan N, Nakprasit K, Israsena N, Rungrotmongkol T, Chuawong P, Vilaivan T, Aonbangkhen C. Design, Synthesis, and Characterization of Novel Styryl Dyes as Fluorescent Probes for Tau Aggregate Detection in Vitro and in Cells. Chem Asian J 2024:e202301081. [PMID: 38377056 DOI: 10.1002/asia.202301081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
A series of novel styryl dye derivatives incorporating indolium and quinolinium core structures were successfully synthesized to explore their interacting and binding capabilities with tau aggregates in vitro and in cells. The synthesized dyes exhibited enhanced fluorescence emission in viscous environments due to the rotatable bond confinement in the core structure. Dye 4, containing a quinolinium moeity and featuring two cationic sites, demonstrated a 28-fold increase in fluorescence emission upon binding to tau aggregates. This dye could also stain tau aggregates in living cells, confirmed by cell imaging using confocal fluorescence microscopy. A molecular docking study was conducted to provide additional visualization and support for binding interactions. This work offers novel and non-cytotoxic fluorescent probes with desirable photophysical properties, which could potentially be used for studying tau aggregates in living cells, prompting further development of new fluorescent probes for early Alzheimer's disease detection.
Collapse
Affiliation(s)
- Withsakorn Sangsuwan
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Chemistry and, Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok, 10900, Thailand
| | - Kriangsak Faikhruea
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kotchakorn Supabowornsathit
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Don Sangsopon
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Praewphan Ingrungruanglert
- Stem Cell and Cell Therapy Research Unit and Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hathaichanok Chuntakaruk
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Napatsaporn Nuntavanotayan
- Department of Chemistry and, Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok, 10900, Thailand
| | - Kittiporn Nakprasit
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nipan Israsena
- Stem Cell and Cell Therapy Research Unit and Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pitak Chuawong
- Department of Chemistry and, Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok, 10900, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|