1
|
Prassler J, Ecke M, Gerisch G. Microtubule dependent sorting of actin-binding proteins in mitosis. Sci Rep 2024; 14:11250. [PMID: 38755233 PMCID: PMC11099102 DOI: 10.1038/s41598-024-61967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
The patterns of Formin B and of the Arp2/3 complex formed during mitosis were studied in a mutant of Dictyostelium discoideum that produces multinucleate cells, which divide by the ingression of unilateral cleavage furrows. During cytokinesis the cells of this mutant remain spread on a glass surface where they generate a planar pattern based on the sorting-out of actin-binding proteins. During anaphase, Formin B and Arp2/3 became localized to the regions of microtubule asters around the centrosomes; Formin B in particular in the form of round, quite uniformly covered areas. These areas have been shown to be depleted of myosin II and the actin-filament crosslinker cortexillin, and to be avoided by cleavage furrows on their path into the cell.
Collapse
Affiliation(s)
- Jana Prassler
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Mary Ecke
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Günther Gerisch
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
2
|
Bakshi A, Iturra FE, Alamban A, Rosas-Salvans M, Dumont S, Aydogan MG. Cytoplasmic division cycles without the nucleus and mitotic CDK/cyclin complexes. Cell 2023; 186:4694-4709.e16. [PMID: 37832525 PMCID: PMC10659773 DOI: 10.1016/j.cell.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 05/11/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Cytoplasmic divisions are thought to rely on nuclear divisions and mitotic signals. We demonstrate in Drosophila embryos that cytoplasm can divide repeatedly without nuclei and mitotic CDK/cyclin complexes. Cdk1 normally slows an otherwise faster cytoplasmic division cycle, coupling it with nuclear divisions, and when uncoupled, cytoplasm starts dividing before mitosis. In developing embryos where CDK/cyclin activity can license mitotic microtubule (MT) organizers like the spindle, cytoplasmic divisions can occur without the centrosome, a principal organizer of interphase MTs. However, centrosomes become essential in the absence of CDK/cyclin activity, implying that the cytoplasm can employ either the centrosome-based interphase or CDK/cyclin-dependent mitotic MTs to facilitate its divisions. Finally, we present evidence that autonomous cytoplasmic divisions occur during unperturbed fly embryogenesis and that they may help extrude mitotically stalled nuclei during blastoderm formation. We postulate that cytoplasmic divisions occur in cycles governed by a yet-to-be-uncovered clock mechanism autonomous from CDK/cyclin complexes.
Collapse
Affiliation(s)
- Anand Bakshi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabio Echegaray Iturra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Alamban
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Miquel Rosas-Salvans
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophie Dumont
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Mustafa G Aydogan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Tong CS, Xǔ XJ, Wu M. Periodicity, mixed-mode oscillations, and multiple timescales in a phosphoinositide-Rho GTPase network. Cell Rep 2023; 42:112857. [PMID: 37494180 DOI: 10.1016/j.celrep.2023.112857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
While rhythmic contractile behavior is commonly observed at the cellular cortex, the primary focus has been on excitable or periodic events described by simple activator-delayed inhibitor mechanisms. We show that Rho GTPase activation in nocodazole-treated mitotic cells exhibits both simple oscillations and complex mixed-mode oscillations. Rho oscillations with a 20- to 30-s period are regulated by phosphatidylinositol (3,4,5)-trisphosphate (PIP3) via an activator-delayed inhibitor mechanism, while a slow reaction with period of minutes is regulated by phosphatidylinositol 4-kinase via an activator-substrate depletion mechanism. Conversion from simple to complex oscillations can be induced by modulating PIP3 metabolism or altering membrane contact site protein E-Syt1. PTEN depletion results in a period-doubling intermediate, which, like mixed-mode oscillations, is an intermediate state toward chaos. In sum, this system operates at the edge of chaos. Small changes in phosphoinositide metabolism can confer cells with the flexibility to rapidly enter ordered states with different periodicities.
Collapse
Affiliation(s)
- Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - X J Xǔ
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
4
|
Ahangar P, Cowin AJ. Reforming the Barrier: The Role of Formins in Wound Repair. Cells 2022; 11:cells11182779. [PMID: 36139355 PMCID: PMC9496773 DOI: 10.3390/cells11182779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
The restoration of an intact epidermal barrier after wound injury is the culmination of a highly complex and exquisitely regulated physiological process involving multiple cells and tissues, overlapping dynamic events and protein synthesis and regulation. Central to this process is the cytoskeleton, a system of intracellular proteins that are instrumental in regulating important processes involved in wound repair including chemotaxis, cytokinesis, proliferation, migration, and phagocytosis. One highly conserved family of cytoskeletal proteins that are emerging as major regulators of actin and microtubule nucleation, polymerization, and stabilization are the formins. The formin family includes 15 different proteins categorized into seven subfamilies based on three formin homology domains (FH1, FH2, and FH3). The formins themselves are regulated in different ways including autoinhibition, activation, and localization by a range of proteins, including Rho GTPases. Herein, we describe the roles and effects of the formin family of cytoskeletal proteins on the fundamental process of wound healing and highlight recent advances relating to their important functions, mechanisms, and regulation at the molecular and cellular levels.
Collapse
|
5
|
Schiffhauer ES, Robinson DN. Mechanochemical Signaling Directs Cell-Shape Change. Biophys J 2017; 112:207-214. [PMID: 28122209 DOI: 10.1016/j.bpj.2016.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/07/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
For specialized cell function, as well as active cell behaviors such as division, migration, and tissue development, cells must undergo dynamic changes in shape. To complete these processes, cells integrate chemical and mechanical signals to direct force production. This mechanochemical integration allows for the rapid production and adaptation of leading-edge machinery in migrating cells, the invasion of one cell into another during cell-cell fusion, and the force-feedback loops that ensure robust cytokinesis. A quantitative understanding of cell mechanics coupled with protein dynamics has allowed us to account for furrow ingression during cytokinesis, a model cell-shape-change process. At the core of cell-shape changes is the ability of the cell's machinery to sense mechanical forces and tune the force-generating machinery as needed. Force-sensitive cytoskeletal proteins, including myosin II motors and actin cross-linkers such as α-actinin and filamin, accumulate in response to internally generated and externally imposed mechanical stresses, endowing the cell with the ability to discern and respond to mechanical cues. The physical theory behind how these proteins display mechanosensitive accumulation has allowed us to predict paralog-specific behaviors of different cross-linking proteins and identify a zone of optimal actin-binding affinity that allows for mechanical stress-induced protein accumulation. These molecular mechanisms coupled with the mechanical feedback systems ensure robust shape changes, but if they go awry, they are poised to promote disease states such as cancer cell metastasis and loss of tissue integrity.
Collapse
Affiliation(s)
- Eric S Schiffhauer
- Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland; Department of Pharmacology and Molecular Science, Johns Hopkins University, Baltimore, Maryland; Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
6
|
Kotýnková K, Su KC, West SC, Petronczki M. Plasma Membrane Association but Not Midzone Recruitment of RhoGEF ECT2 Is Essential for Cytokinesis. Cell Rep 2016; 17:2672-2686. [PMID: 27926870 PMCID: PMC5177604 DOI: 10.1016/j.celrep.2016.11.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/29/2016] [Accepted: 11/07/2016] [Indexed: 11/27/2022] Open
Abstract
Cytokinesis, the final step of cell division, begins with the formation of a cleavage furrow. How the mitotic spindle specifies the furrow at the equator in animal cells remains unknown. Current models propose that the concentration of the RhoGEF ECT2 at the spindle midzone and the equatorial plasma membrane directs furrow formation. Using chemical genetic and optogenetic tools, we demonstrate that the association of ECT2 with the plasma membrane during anaphase is required and sufficient for cytokinesis. Local membrane targeting of ECT2 leads to unilateral furrowing, highlighting the importance of local ECT2 activity. ECT2 mutations that prevent centralspindlin binding compromise concentration of ECT2 at the midzone and equatorial membrane but sustain cytokinesis. While the association of ECT2 with the plasma membrane is essential for cytokinesis, our data suggest that ECT2 recruitment to the spindle midzone is insufficient to account for equatorial furrowing and may act redundantly with yet-uncharacterized signals.
Collapse
Affiliation(s)
- Kristýna Kotýnková
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK; DNA Recombination and Repair Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kuan-Chung Su
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK; Whitehead Institute and Department of Biology, MIT, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK; Boehringer Ingelheim RCV, Dr.-Boehringer-Gasse 5-11, 1121 Vienna, Austria.
| |
Collapse
|
7
|
Pillitteri LJ, Guo X, Dong J. Asymmetric cell division in plants: mechanisms of symmetry breaking and cell fate determination. Cell Mol Life Sci 2016; 73:4213-4229. [PMID: 27286799 PMCID: PMC5522748 DOI: 10.1007/s00018-016-2290-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
Abstract
Asymmetric cell division is a fundamental mechanism that generates cell diversity while maintaining self-renewing stem cell populations in multicellular organisms. Both intrinsic and extrinsic mechanisms underpin symmetry breaking and differential daughter cell fate determination in animals and plants. The emerging picture suggests that plants deal with the problem of symmetry breaking using unique cell polarity proteins, mobile transcription factors, and cell wall components to influence asymmetric divisions and cell fate. There is a clear role for altered auxin distribution and signaling in distinguishing two daughter cells and an emerging role for epigenetic modifications through chromatin remodelers and DNA methylation in plant cell differentiation. The importance of asymmetric cell division in determining final plant form provides the impetus for its study in the areas of both basic and applied science.
Collapse
Affiliation(s)
- Lynn Jo Pillitteri
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Xiaoyu Guo
- Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA.
- Department of Plant Biology and Pathology, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
8
|
Nannas NJ, Higgins DM, Dawe RK. Anaphase asymmetry and dynamic repositioning of the division plane during maize meiosis. J Cell Sci 2016; 129:4014-4024. [PMID: 27609836 DOI: 10.1242/jcs.194860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/05/2016] [Indexed: 01/12/2023] Open
Abstract
The success of an organism is contingent upon its ability to transmit genetic material through meiotic cell division. In plant meiosis I, the process begins in a large spherical cell without physical cues to guide the process. Yet, two microtubule-based structures, the spindle and phragmoplast, divide the chromosomes and the cell with extraordinary accuracy. Using a live-cell system and fluorescently labeled spindles and chromosomes, we found that the process self- corrects as meiosis proceeds. Metaphase spindles frequently initiate division off-center, and in these cases anaphase progression is asymmetric with the two masses of chromosomes traveling unequal distances on the spindle. The asymmetry is compensatory, such that the chromosomes on the side of the spindle that is farthest from the cell cortex travel a longer distance at a faster rate. The phragmoplast forms at an equidistant point between the telophase nuclei rather than at the original spindle mid-zone. This asymmetry in chromosome movement implies a structural difference between the two halves of a bipolar spindle and could allow meiotic cells to dynamically adapt to errors in metaphase and accurately divide the cell volume.
Collapse
Affiliation(s)
- Natalie J Nannas
- Department of Plant Biology, University of Georgia, Athens, GA 30605, USA
| | - David M Higgins
- Department of Plant Biology, University of Georgia, Athens, GA 30605, USA
| | - R Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, GA 30605, USA .,Department of Genetics, University of Georgia, Athens, GA 30605, USA
| |
Collapse
|
9
|
Fortier M, Celton-Morizur S, Desdouets C. Incomplete cytokinesis/binucleation in mammals: The powerful system of hepatocytes. Methods Cell Biol 2016; 137:119-142. [PMID: 28065301 DOI: 10.1016/bs.mcb.2016.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyploidy, the state of having greater than a diploid DNA content (tetraploid, octoploid, etc.) is a characteristic feature of mammalian hepatocytes and accompanies late fetal development and postnatal maturation of the liver. During the weaning period, diploid hepatocytes can engage either into normal cell division cycle giving rise to two diploid hepatocytes or follow a scheduled division program characterized by incomplete cytokinesis. In that case, diploid hepatocytes undergo mitosis, but do not form a contractile ring. Indeed, cleavage-plane specification is never established, because of the deficiencies of actin cytoskeleton reorganization. Furthermore, microtubules fail both to contact the cortex and to deliver their molecular signal, preventing localization and activation of RhoA. Therefore, cytokinesis aborts and a binucleate tetraploid liver cell is generated, which subsequently plays a pivotal role in liver progressive polyploidization. In this chapter, we describe detailed protocols to monitor hepatocyte proliferation and cytokinesis process by in situ and dynamic ex vivo approaches.
Collapse
Affiliation(s)
- M Fortier
- Inserm, U1016, Paris, France; CNRS, UMR 8104, Paris, France; Paris Descartes University, Paris, France
| | - S Celton-Morizur
- Inserm, U1016, Paris, France; CNRS, UMR 8104, Paris, France; Paris Descartes University, Paris, France
| | - C Desdouets
- Inserm, U1016, Paris, France; CNRS, UMR 8104, Paris, France; Paris Descartes University, Paris, France
| |
Collapse
|
10
|
Henson JH, Buckley MW, Yeterian M, Weeks RM, Simerly CR, Shuster CB. Central Spindle Self-Organization and Cytokinesis in Artificially Activated Sea Urchin Eggs. THE BIOLOGICAL BULLETIN 2016; 230:85-95. [PMID: 27132131 DOI: 10.1086/bblv230n2p85] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability of microtubules of the mitotic apparatus to control the positioning and initiation of the cleavage furrow during cytokinesis was first established from studies on early echinoderm embryos. However, the identity of the microtubule population that imparts cytokinetic signaling is unclear. The two main--and not necessarily mutually exclusive--candidates are the central spindle and the astral rays. In the present study, we examined cytokinesis in ammonia-activated sea urchin eggs, which lack paternally derived centrosomes and undergo mitosis mediated by unusual anastral, bipolar mini-spindles. Live cell imaging and immunolabeling for microtubules and the centralspindlin constituent and kinesin-related protein, MKLP1, demonstrated that furrowing in ammonia-activated eggs was associated with aligned arrays of centralspindlin-linked, opposed bundles of antiparallel microtubules. These autonomous, zipper-like arrays were not associated with a mitotic apparatus, but did possess characteristics similar to the central spindle region of control, fertilized embryos. Our results highlight the self-organizing nature of the central spindle region and its ability to induce cytokinesis-like furrowing, even in the absence of a complete mitotic apparatus.
Collapse
Affiliation(s)
- John H Henson
- Department of Biology, Dickinson College, Carlisle, Pennsylvania 17013; Marine Biological Laboratory, Woods Hole, Massachusetts 02543;
| | - Mary W Buckley
- Department of Biology, Dickinson College, Carlisle, Pennsylvania 17013
| | - Mesrob Yeterian
- Department of Biology, Dickinson College, Carlisle, Pennsylvania 17013
| | - Richard M Weeks
- Department of Biology, Dickinson College, Carlisle, Pennsylvania 17013
| | - Calvin R Simerly
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; and
| | - Charles B Shuster
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543; Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003
| |
Collapse
|
11
|
Asano E, Hasegawa H, Hyodo T, Ito S, Maeda M, Chen D, Takahashi M, Hamaguchi M, Senga T. SHCBP1 is required for midbody organization and cytokinesis completion. Cell Cycle 2015; 13:2744-51. [PMID: 25486361 DOI: 10.4161/15384101.2015.945840] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The centralspindlin complex, which is composed of MKLP1 and MgcRacGAP, is one of the crucial factors involved in cytokinesis initiation. Centralspindlin is localized at the middle of the central spindle during anaphase and then concentrates at the midbody to control abscission. A number of proteins that associate with centralspindlin have been identified. These associating factors regulate furrowing and abscission in coordination with centralspindlin. A recent study identified a novel centralspindlin partner, called Nessun Dorma, which is essential for germ cell cytokinesis in Drosophila melanogaster. SHCBP1 is a human ortholog of Nessun Dorma that associates with human centralspindlin. In this report, we analyzed the interaction of SHCBP1 with centralspindlin in detail and determined the regions that are required for the interaction. In addition, we demonstrate that the central region is necessary for the SHCBP1 dimerization. Both MgcRacGAP and MKLP1 are degraded once cells exit mitosis. Similarly, endogenous and exogenous SHCBP1 were degraded with mitosis progression. Interestingly, SHCBP1 expression was significantly reduced in the absence of centralspindlin, whereas centralspindlin expression was not affected by SHCBP1 knockdown. Finally, we demonstrate that SHCBP1 depletion promotes midbody structure disruption and inhibits abscission, a final stage of cytokinesis. Our study gives novel insight into the role of SHCBP in cytokinesis completion.
Collapse
Affiliation(s)
- Eri Asano
- a Division of Cancer Biology ; Nagoya University Graduate School of Medicine ; Nagoya , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kiyomitsu T. Mechanisms of daughter cell-size control during cell division. Trends Cell Biol 2015; 25:286-95. [DOI: 10.1016/j.tcb.2014.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/14/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
|
13
|
Kittur H, Weaver W, Di Carlo D. Well-plate mechanical confinement platform for studies of mechanical mutagenesis. Biomed Microdevices 2014; 16:439-47. [PMID: 24619125 DOI: 10.1007/s10544-014-9846-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Limited space for cell division, perhaps similar to the compressed microenvironment of a growing tumor, has been shown to induce phenotypic and karyotypic changes to a cell during mitosis. To expand understanding of this missegregation of chromosomes in aberrant multi-daughter or asymmetric cell divisions, we present a simple technique for subjecting mammalian cells to adjustable levels of confinement which allows subsequent interrogation of intracellular molecular components using high resolution confocal imaging. PDMS micropatterned confinement structures of subcellular height with neighboring taller media reservoir channels were secured on top of confluent cells with a custom compression well-plate system. The system improved ease of use over previous devices since confined cells could be initially grown on glass coverslips in a 12-well plate, and subsequently be imaged by high resolution confocal imaging, or during compression by live cell imaging. Live cell imaging showed a significant increase in abnormal divisions of confined cells across three different cell lines (HeLa, A375, and A549). Immunofluoresecence stains revealed a significant increase in cell diameter and chromosome area of confined cells, but no significant increase in centrosome-centromere distance upon division when compared to unconfined cells. The developed system could open up studies more broadly on confinement effects on mitotic processes, and increase the throughput of such studies.
Collapse
Affiliation(s)
- H Kittur
- University of California - Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
14
|
Roubinet C, Cabernard C. Control of asymmetric cell division. Curr Opin Cell Biol 2014; 31:84-91. [DOI: 10.1016/j.ceb.2014.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022]
|
15
|
Bhutta MS, McInerny CJ, Gould GW. ESCRT function in cytokinesis: location, dynamics and regulation by mitotic kinases. Int J Mol Sci 2014; 15:21723-39. [PMID: 25429432 PMCID: PMC4284674 DOI: 10.3390/ijms151221723] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 01/22/2023] Open
Abstract
Mammalian cytokinesis proceeds by constriction of an actomyosin ring and furrow ingression, resulting in the formation of the midbody bridge connecting two daughter cells. At the centre of the midbody resides the Flemming body, a dense proteinaceous ring surrounding the interlocking ends of anti-parallel microtubule arrays. Abscission, the terminal step of cytokinesis, occurs near the Flemming body. A series of broad processes govern abscission: the initiation and stabilisation of the abscission zone, followed by microtubule severing and membrane scission-The latter mediated by the endosomal sorting complex required for transport (ESCRT) proteins. A key goal of cell and developmental biologists is to develop a clear understanding of the mechanisms that underpin abscission, and how the spatiotemporal coordination of these events with previous stages in cell division is accomplished. This article will focus on the function and dynamics of the ESCRT proteins in abscission and will review recent work, which has begun to explore how these complex protein assemblies are regulated by the cell cycle machinery.
Collapse
Affiliation(s)
- Musab S Bhutta
- Henry Wellcome Laboratory of Cell Biology, Davidson Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Christopher J McInerny
- Henry Wellcome Laboratory of Cell Biology, Davidson Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Gwyn W Gould
- Henry Wellcome Laboratory of Cell Biology, Davidson Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
16
|
Bošnjak I, Borra M, Iamunno F, Benvenuto G, Ujević I, Bušelić I, Roje-Busatto R, Mladineo I. Effect of bisphenol A on P-glycoprotein-mediated efflux and ultrastructure of the sea urchin embryo. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:21-9. [PMID: 25127357 DOI: 10.1016/j.aquatox.2014.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/20/2014] [Accepted: 07/24/2014] [Indexed: 05/04/2023]
Abstract
Usage of bisphenol A (BPA) in production of polycarbonate plastics has resulted in global distribution of BPA in the environment. These high concentrations cause numerous negative effects to the aquatic biota, among which the most known is the induction of endocrine disruption. The focus of this research was to determine the effects of two experimentally determined concentrations of BPA (100nM and 4μM) on cellular detoxification mechanisms during the embryonic development (2-cell, pluteus) of the rocky sea urchin (Paracentrotus lividus), primarily the potential involvement of multidrug efflux transport in the BPA intercellular efflux. The results of transport assay, measurements of the intracellular BPA and gene expression surveys, for the first time indicate the importance of P-glycoprotein (P-gp/ABCB1) in defense against BPA. Cytotoxic effects of BPA, validated by the immunohistochemistry (IHC) and the transmission electron microscopy (TEM), induced the aberrant karyokinesis, and consequently, the impairment of embryo development through the first cell division and retardation.
Collapse
Affiliation(s)
- Ivana Bošnjak
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, Croatia
| | - Marco Borra
- Molecular Biology Service, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Franco Iamunno
- Electron Microscopy Service, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Giovanna Benvenuto
- Electron Microscopy Service, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Ivana Ujević
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split, Croatia
| | - Ivana Bušelić
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split, Croatia
| | - Romana Roje-Busatto
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split, Croatia
| | - Ivona Mladineo
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split, Croatia; Assemble Marine Laboratory, Stazione Zoological Anton Dohrn, Villa Comunale, Naples, Italy.
| |
Collapse
|
17
|
Chircop M. Rho GTPases as regulators of mitosis and cytokinesis in mammalian cells. Small GTPases 2014; 5:29770. [PMID: 24988197 DOI: 10.4161/sgtp.29770] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rho GTPases regulate a diverse range of cellular functions primarily through their ability to modulate microtubule dynamics and the actin-myosin cytoskeleton. Both of these cytoskeletal structures are crucial for a mitotic cell division. Specifically, their assembly and disassembly is tightly regulated in a temporal manner to ensure that each mitotic stage occurs in the correct sequential order and not prematurely until the previous stage is completed. Thus, it is not surprising that the Rho GTPases, RhoA, and Cdc42, have reported roles in several stages of mitosis: cell cortex stiffening during cell rounding, mitotic spindle formation, and bi-orient attachment of the spindle microtubules to the kinetochore and during cytokinesis play multiple roles in establishing the division plane, assembly, and activation of the contractile ring, membrane ingression, and abscission. Here, I review the molecular mechanisms regulating the spatial and temporal activation of RhoA and Cdc42 during mitosis, and how this is critical for mitotic progression and completion.
Collapse
Affiliation(s)
- Megan Chircop
- Children's Medical Research Institute; The University of Sydney; Westmead, Australia
| |
Collapse
|
18
|
Nam HJ, Lee IJ, Jang S, Bae CD, Kwak SJ, Lee JH. p90 ribosomal S6 kinase 1 (RSK1) isoenzyme specifically regulates cytokinesis progression. Cell Signal 2014; 26:208-19. [DOI: 10.1016/j.cellsig.2013.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/08/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
|
19
|
Kiyomitsu T, Cheeseman IM. Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase. Cell 2013; 154:391-402. [PMID: 23870127 DOI: 10.1016/j.cell.2013.06.010] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/28/2013] [Accepted: 06/10/2013] [Indexed: 02/02/2023]
Abstract
Mitotic spindle position defines the cell-cleavage site during cytokinesis. However, the mechanisms that control spindle positioning to generate equal-sized daughter cells remain poorly understood. Here, we demonstrate that two mechanisms act coordinately to center the spindle during anaphase in symmetrically dividing human cells. First, the spindle is positioned directly by the microtubule-based motor dynein, which we demonstrate is targeted to the cell cortex by two distinct pathways: a Gαi/LGN/NuMA-dependent pathway and a 4.1G/R and NuMA-dependent, anaphase-specific pathway. Second, we find that asymmetric plasma membrane elongation occurs in response to spindle mispositioning to alter the cellular boundaries relative to the spindle. Asymmetric membrane elongation is promoted by chromosome-derived Ran-GTP signals that locally reduce Anillin at the growing cell cortex. In asymmetrically elongating cells, dynein-dependent spindle anchoring at the stationary cell cortex ensures proper spindle positioning. Our results reveal the anaphase-specific spindle centering systems that achieve equal-sized cell division.
Collapse
Affiliation(s)
- Tomomi Kiyomitsu
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
20
|
Almendro-Vedia VG, Monroy F, Cao FJ. Mechanics of constriction during cell division: a variational approach. PLoS One 2013; 8:e69750. [PMID: 23990888 PMCID: PMC3749217 DOI: 10.1371/journal.pone.0069750] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
During symmetric division cells undergo large constriction deformations at a stable midcell site. Using a variational approach, we investigate the mechanical route for symmetric constriction by computing the bending energy of deformed vesicles with rotational symmetry. Forces required for constriction are explicitly computed at constant area and constant volume, and their values are found to be determined by cell size and bending modulus. For cell-sized vesicles, considering typical bending modulus of [Formula: see text], we calculate constriction forces in the range [Formula: see text]. The instability of symmetrical constriction is shown and quantified with a characteristic coefficient of the order of [Formula: see text], thus evidencing that cells need a robust mechanism to stabilize constriction at midcell.
Collapse
Affiliation(s)
- Victor G. Almendro-Vedia
- Departamento de Física Atómica, Molecular y Nuclear and Departamento de Química Física I, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física I, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| | - Francisco J. Cao
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| |
Collapse
|
21
|
Ferraro-Gideon J, Hoang C, Forer A. Mesostoma ehrenbergii spermatocytes--a unique and advantageous cell for studying meiosis. Cell Biol Int 2013; 37:892-8. [PMID: 23686688 DOI: 10.1002/cbin.10130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/21/2013] [Indexed: 01/06/2023]
Abstract
Mesostoma ehrenbergii have a unique male meiosis: their spermatocytes have three large bivalents that oscillate for 1-2 h before entering into anaphase without having formed a metaphase plate, have a precocious ('pre-anaphase') cleavage furrow, and have four univalents that segregate between spindle poles without physical interaction between them, that is via 'distance segregation'. These unique and unconventional features make Mesostoma spermatocytes an ideal organism for studying the force produced by the spindle to move chromosomes, and to study cleavage furrow control and 'distance segregation'. We review the literature on meiosis in Mesostoma spermatocytes and describe our current research with Mesostoma spermatocytes, rearing the animals in the laboratory using methods that described in our companion article [Hoang et al. (2013); Cell Biol Int].
Collapse
|
22
|
Atilgan E, Burgess D, Chang F. Localization of cytokinesis factors to the future cell division site by microtubule-dependent transport. Cytoskeleton (Hoboken) 2012; 69:973-82. [PMID: 23001894 DOI: 10.1002/cm.21068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 02/01/2023]
Abstract
The mechanism by which spindle microtubules (MTs) determine the site of cell division in animal cells is still highly controversial. Putative cytokinesis "signals" have been proposed to be positioned by spindle MTs at equatorial cortical regions to increase cortical contractility and/or at polar regions to decrease contractility [Rappaport, 1986; von Dassow, 2009]. Given the relative paucity of MTs at the future division site, it has not been clear how MTs localize cytokinesis factors there. Here, we test cytokinesis models using computational and experimental approaches. We present a simple lattice-based model in which signal-kinesin complexes move by transient plus-end directed movements on MTs interspersed with occasions of uniform diffusion in the cytoplasm. In simulations, complexes distribute themselves initially at the spindle midzone and then move on astral MTs to accumulate with time at the equatorial cortex. Simulations accurately predict cleavage patterns of cells with different geometries and MT arrangements and elucidate several experimental observations that have defied easy explanation by previous models. We verify this model with experiments on indented sea urchin zygotes showing that cells often divide perpendicular to the spindle at sites distinct from the indentations. These studies support an equatorial stimulation model and provide a simple mechanism explaining how cytokinesis factors localize to the future division site.
Collapse
Affiliation(s)
- Erdinc Atilgan
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
23
|
Sharifmoghadam MR, Curto MÁ, Hoya M, de León N, Martin-Garcia R, Doncel C, Valdivieso MH. The integrity of the cytokinesis machinery under stress conditions requires the glucan synthase Bgs1p and its regulator Cfh3p. PLoS One 2012; 7:e42726. [PMID: 22905165 PMCID: PMC3419747 DOI: 10.1371/journal.pone.0042726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/10/2012] [Indexed: 12/29/2022] Open
Abstract
In yeast, cytokinesis requires coordination between nuclear division, acto-myosin ring contraction, and septum synthesis. We studied the role of the Schizosaccharomyces pombe Bgs1p and Cfh3p proteins during cytokinesis under stress conditions. Cfh3p formed a ring in the septal area that contracted during mitosis; Cfh3p colocalized and co-immunoprecipitated with Cdc15p, showing that Cfh3p interacted with the contractile acto-myosin ring. In a wild-type strain, a significant number of contractile rings collapsed under stress conditions and this number increased dramatically in the cfh3Δ, bgs1cps1-191, and cfh3Δ bgs1/cps1-191. Our results show that after osmotic shock Cfh3p is essential for the stability of the (1,3) glucan synthase Bgs1p in the septal area, but not at the cell poles. Finally, cells adapted to stress; they repaired their contractile rings and re-localized Bgs1p to the cell surface some time after osmotic shock. A detailed analysis of the cytokinesis machinery in the presence of KCl revealed that the actomyosin ring collapsed before Bgs1p was internalized, and that it was repaired before Bgs1p re-localized to the cell surface. In the cfh3Δ, bgs1/cps1-191, and cfh3Δ bgs1/cps1-191 mutants, which have reduced glucan synthesis, the damage produced to the ring had stronger consequences, suggesting that an intact primary septum contributes to ring stability. The results show that the contractile actomyosin ring is very sensitive to stress, and that cells have efficient mechanisms to remedy the damage produced in this structure.
Collapse
Affiliation(s)
- Mohammad Reza Sharifmoghadam
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
- Faculty of Veterinary Medicine, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| | - M.-Ángeles Curto
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Marta Hoya
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Nagore de León
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Rebeca Martin-Garcia
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Cristina Doncel
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - M.-Henar Valdivieso
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
- * E-mail:
| |
Collapse
|
24
|
Predicting division plane position and orientation. Trends Cell Biol 2012; 22:193-200. [DOI: 10.1016/j.tcb.2012.01.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/06/2012] [Accepted: 01/10/2012] [Indexed: 01/06/2023]
|
25
|
Kee YS, Ren Y, Dorfman D, Iijima M, Firtel R, Iglesias PA, Robinson DN. A mechanosensory system governs myosin II accumulation in dividing cells. Mol Biol Cell 2012; 23:1510-23. [PMID: 22379107 PMCID: PMC3327329 DOI: 10.1091/mbc.e11-07-0601] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 02/15/2012] [Accepted: 02/24/2012] [Indexed: 01/14/2023] Open
Abstract
The mitotic spindle is generally considered the initiator of furrow ingression. However, recent studies suggest that furrows can form without spindles, particularly during asymmetric cell division. In Dictyostelium, the mechanoenzyme myosin II and the actin cross-linker cortexillin I form a mechanosensor that responds to mechanical stress, which could account for spindle-independent contractile protein recruitment. Here we show that the regulatory and contractility network composed of myosin II, cortexillin I, IQGAP2, kinesin-6 (kif12), and inner centromeric protein (INCENP) is a mechanical stress-responsive system. Myosin II and cortexillin I form the core mechanosensor, and mechanotransduction is mediated by IQGAP2 to kif12 and INCENP. In addition, IQGAP2 is antagonized by IQGAP1 to modulate the mechanoresponsiveness of the system, suggesting a possible mechanism for discriminating between mechanical and biochemical inputs. Furthermore, IQGAP2 is important for maintaining spindle morphology and kif12 and myosin II cleavage furrow recruitment. Cortexillin II is not directly involved in myosin II mechanosensitive accumulation, but without cortexillin I, cortexillin II's role in membrane-cortex attachment is revealed. Finally, the mitotic spindle is dispensable for the system. Overall, this mechanosensory system is structured like a control system characterized by mechanochemical feedback loops that regulate myosin II localization at sites of mechanical stress and the cleavage furrow.
Collapse
Affiliation(s)
- Yee-Seir Kee
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Yixin Ren
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Danielle Dorfman
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Richard Firtel
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
26
|
Shrestha S, Wilmeth LJ, Eyer J, Shuster CB. PRC1 controls spindle polarization and recruitment of cytokinetic factors during monopolar cytokinesis. Mol Biol Cell 2012; 23:1196-207. [PMID: 22323288 PMCID: PMC3315816 DOI: 10.1091/mbc.e11-12-1008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PRC1 and KIF4A are believed to play a critical role in organizing antiparallel microtubules of the central spindle. Separable and nonredundant roles for these proteins were uncovered using cells with compromised spindle bipolarity, in which cytokinesis can be induced by bypassing the spindle assembly checkpoint. The central spindle is a postanaphase array of microtubules that plays an essential role in organizing the signaling machinery for cytokinesis. The model by which the central spindle organizes the cytokinetic apparatus is premised on an antiparallel arrangement of microtubules, yet cells lacking spindle bipolarity are capable of generating a distal domain of ectopic furrowing when forced into mitotic exit. Because protein regulator of cytokinesis (PRC1) and kinesin family member 4A (KIF4A) are believed to play a principal role in organizing the antiparallel midzone array, we sought to clarify their roles in monopolar cytokinesis. Although both factors localized to the distal ends of microtubules during monopolar cytokinesis, depletion of PRC1 and KIF4A displayed different phenotypes. Cells depleted of PRC1 failed to form a polarized microtubule array or ectopic furrows following mitotic exit, and recruitment of Aurora B kinase, male germ cell Rac GTPase-activating protein, and RhoA to the cortex was impaired. In contrast, KIF4A depletion impaired neither polarization nor ectopic furrowing, but it did result in elongated spindles with a diffuse distribution of cytokinetic factors. Thus, even in the absence of spindle bipolarity, PRC1 appears to be essential for polarizing parallel microtubules and concentrating the factors responsible for contractile ring assembly, whereas KIF4A is required for limiting the length of anaphase microtubules.
Collapse
Affiliation(s)
- Sanjay Shrestha
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
27
|
Szafer-Glusman E, Fuller MT, Giansanti MG. Role of Survivin in cytokinesis revealed by a separation-of-function allele. Mol Biol Cell 2011; 22:3779-90. [PMID: 21865602 PMCID: PMC3192858 DOI: 10.1091/mbc.e11-06-0569] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A mutation in Drosophila Survivin that enables metaphase functions but impairs cytokinesis demonstrates a role for Survivin and CPC in Rho activation and contractile ring assembly and highlights striking differences in regulation of cytokinesis in different cell systems. The chromosomal passenger complex (CPC), containing Aurora B kinase, Inner Centromere Protein, Survivin, and Borealin, regulates chromosome condensation and interaction between kinetochores and microtubules at metaphase, then relocalizes to midzone microtubules at anaphase and regulates central spindle organization and cytokinesis. However, the precise role(s) played by the CPC in anaphase have been obscured by its prior functions in metaphase. Here we identify a missense allele of Drosophila Survivin that allows CPC localization and function during metaphase but not cytokinesis. Analysis of mutant cells showed that Survivin is essential to target the CPC and the mitotic kinesin-like protein 1 orthologue Pavarotti (Pav) to the central spindle and equatorial cell cortex during anaphase in both larval neuroblasts and spermatocytes. Survivin also enabled localization of Polo kinase and Rho at the equatorial cortex in spermatocytes, critical for contractile ring assembly. In neuroblasts, in contrast, Survivin function was not required for localization of Rho, Polo, or Myosin II to a broad equatorial cortical band but was required for Myosin II to transition to a compact, fully constricted ring. Analysis of this “separation-of-function” allele demonstrates the direct role of Survivin and the CPC in cytokinesis and highlights striking differences in regulation of cytokinesis in different cell systems.
Collapse
Affiliation(s)
- Edith Szafer-Glusman
- Department of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
28
|
Sedzinski J, Biro M, Oswald A, Tinevez JY, Salbreux G, Paluch E. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 2011; 476:462-6. [PMID: 21822289 DOI: 10.1038/nature10286] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 06/13/2011] [Indexed: 12/21/2022]
Abstract
Cytokinesis, the physical separation of daughter cells at the end of mitosis, requires precise regulation of the mechanical properties of the cell periphery. Although studies of cytokinetic mechanics mostly focus on the equatorial constriction ring, a contractile actomyosin cortex is also present at the poles of dividing cells. Whether polar forces influence cytokinetic cell shape and furrow positioning remains an open question. Here we demonstrate that the polar cortex makes cytokinesis inherently unstable. We show that limited asymmetric polar contractions occur during cytokinesis, and that perturbing the polar cortex leads to cell shape oscillations, resulting in furrow displacement and aneuploidy. A theoretical model based on a competition between cortex turnover and contraction dynamics accurately accounts for the oscillations. We further propose that membrane blebs, which commonly form at the poles of dividing cells and whose role in cytokinesis has long been enigmatic, stabilize cell shape by acting as valves releasing cortical contractility. Our findings reveal an inherent instability in the shape of the dividing cell and unveil a novel, spindle-independent mechanism ensuring the stability of cleavage furrow positioning.
Collapse
Affiliation(s)
- Jakub Sedzinski
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Greenbaum MP, Iwamori T, Buchold GM, Matzuk MM. Germ cell intercellular bridges. Cold Spring Harb Perspect Biol 2011; 3:a005850. [PMID: 21669984 DOI: 10.1101/cshperspect.a005850] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Stable intercellular bridges are a conserved feature of gametogenesis in multicellular animals observed more than 100 years ago, but their function was unknown. Many of the components necessary for this structure have been identified through the study of cytokinesis in Drosophila; however, mammalian intercellular bridges have distinct properties from those of insects. Mammalian germ cell intercellular bridges are composed of general cytokinesis components with additional germ cell-specific factors including TEX14. TEX14 is an inactive kinase essential for the maintenance of stable intercellular bridges in gametes of both sexes but whose loss specifically impairs male meiosis. TEX14 acts to impede the terminal steps of abscission by competing for essential component CEP55, blocking its interaction in nongerm cells with ALIX and TSG101. Additionally, TEX14-interacting protein RBM44, whose localization in stabile intercellular bridges is limited to pachytene and secondary spermatocytes, may participate in processes such as RNA transport but is nonessential to the maintenance of intercellular bridge stability.
Collapse
Affiliation(s)
- Michael P Greenbaum
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
30
|
Clark AG, Paluch E. Mechanics and regulation of cell shape during the cell cycle. Results Probl Cell Differ 2011; 53:31-73. [PMID: 21630140 DOI: 10.1007/978-3-642-19065-0_3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many cell types undergo dramatic changes in shape throughout the cell cycle. For individual cells, a tight control of cell shape is crucial during cell division, but also in interphase, for example during cell migration. Moreover, cell cycle-related cell shape changes have been shown to be important for tissue morphogenesis in a number of developmental contexts. Cell shape is the physical result of cellular mechanical properties and of the forces exerted on the cell. An understanding of the causes and repercussions of cell shape changes thus requires knowledge of both the molecular regulation of cellular mechanics and how specific changes in cell mechanics in turn effect global shape changes. In this chapter, we provide an overview of the current knowledge on the control of cell morphology, both in terms of general cell mechanics and specifically during the cell cycle.
Collapse
Affiliation(s)
- Andrew G Clark
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|
31
|
Abstract
Cells can polarize in response to external signals, such as chemical gradients, cell-cell contacts, and electromagnetic fields. However, cells can also polarize in the absence of an external cue. For example, a motile cell, which initially has a more or less round shape, can lose its symmetry spontaneously even in a homogeneous environment and start moving in random directions. One of the principal determinants of cell polarity is the cortical actin network that underlies the plasma membrane. Tension in this network generated by myosin motors can be relaxed by rupture of the shell, leading to polarization. In this article, we discuss how simplified model systems can help us to understand the physics that underlie the mechanics of symmetry breaking.
Collapse
Affiliation(s)
- Jasper van der Gucht
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
32
|
Precocious (pre-anaphase) cleavage furrows in Mesostoma spermatocytes. Eur J Cell Biol 2010; 89:607-18. [PMID: 20434231 DOI: 10.1016/j.ejcb.2010.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 12/22/2022] Open
Abstract
It generally is assumed that cleavage furrows start ingression at anaphase, but this is not always true. Cleavage furrows are initiated during prometaphase in spermatocytes of the flatworm Mesostoma, becoming detectable soon after the spindles achieve bipolarity. The furrows deepen during prometaphase, but ingression soon arrests. After anaphase the pre-existing furrow recommences its ingression and rapidly cleaves the cell. Such "precocious" furrowing also commonly occurs in diatoms and other algae. The position of the "precocious" cleavage furrow changes when there are changes in the distribution of chromosomes. Each of the 4 unipolarly-oriented univalent chromosomes moves to a pole at the start of prometaphase but later in prometaphase may move to the opposite pole. The furrow position adjusts during prometaphase according to the numbers of univalents at the two poles: when there are two univalent chromosomes at each pole the furrow is symmetrical at the spindle equator, but when there are unequal numbers at the poles the furrow shifts 2-3 microm toward the half-spindle with fewer univalents. Nocodazole causes spindle microtubules to disappear. After addition of nocodazole, bivalents become detached from one pole and move toward the other, which causes the furrow to shift 2-3 microm toward the pole with fewer chromosomes. Furrow positioning thus is sensitive to the positioning of chromosomes in the spindle and furrow positions change in the absence of spindle microtubules.
Collapse
|
33
|
Akiyama M, Tero A, Kobayashi R. A mathematical model of cleavage. J Theor Biol 2010; 264:84-94. [DOI: 10.1016/j.jtbi.2009.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/17/2009] [Accepted: 12/12/2009] [Indexed: 10/20/2022]
|
34
|
Hornick JE, Karanjeet K, Collins ES, Hinchcliffe EH. Kinesins to the core: The role of microtubule-based motor proteins in building the mitotic spindle midzone. Semin Cell Dev Biol 2010; 21:290-9. [PMID: 20109573 PMCID: PMC3951275 DOI: 10.1016/j.semcdb.2010.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/19/2010] [Indexed: 12/23/2022]
Abstract
In mammalian cultured cells the initiation of cytokinesis is regulated - both temporally and spatially - by the overlapping, anti-parallel microtubules of the spindle midzone. This region recruits several key central spindle components: PRC-1, polo-like kinase 1 (Plk-1), the centralspindlin complex, and the chromosome passenger complex (CPC), which together serve to stabilize the microtubule overlap, and also to coordinate the assembly of the cortical actin/myosin cytoskeleton necessary to physically cleave the cell in two. The localization of these crucial elements to the spindle midzone requires members of the kinesin superfamily of microtubule-based motor proteins. Here we focus on reviewing the role played by a variety of kinesins in both building and operating the spindle midzone machinery during cytokinesis.
Collapse
Affiliation(s)
- Jessica E. Hornick
- Department of Obstetrics and Gynecology, and Robert H. Lurie Cancer Center, Northwestern University School of Medicine, Chicago, IL 60611 USA
| | - Kul Karanjeet
- Cell Dynamics Section, The Hormel Institute University of Minnesota, Austin, MN 55912 USA
| | - Elizabeth S. Collins
- Cell Dynamics Section, The Hormel Institute University of Minnesota, Austin, MN 55912 USA
- Department of Biology, University of Massachusetts, Amherst, MA 01003 USA
| | - Edward H. Hinchcliffe
- Cell Dynamics Section, The Hormel Institute University of Minnesota, Austin, MN 55912 USA
| |
Collapse
|
35
|
Abstract
Cytokinesis is the final step in cell division. The process begins during chromosome segregation, when the ingressing cleavage furrow begins to partition the cytoplasm between the nascent daughter cells. The process is not completed until much later, however, when the final cytoplasmic bridge connecting the two daughter cells is severed. Cytokinesis is a highly ordered process, requiring an intricate interplay between cytoskeletal, chromosomal and cell cycle regulatory pathways. A surprisingly broad range of additional cellular processes are also important for cytokinesis, including protein and membrane trafficking, lipid metabolism, protein synthesis and signaling pathways. As a highly regulated, complex process, it is not surprising that cytokinesis can sometimes fail. Cytokinesis failure leads to both centrosome amplification and production of tetraploid cells, which may set the stage for the development of tumor cells. However, tetraploid cells are abundant components of some normal tissues including liver and heart, indicating that cytokinesis is physiologically regulated. In this chapter, we summarize our current understanding of the mechanisms of cytokinesis, emphasizing steps in the pathway that may be regulated or prone to failure. Our discussion emphasizes findings in vertebrate cells although we have attempted to highlight important contributions from other model systems.
Collapse
|
36
|
von Dassow G, Verbrugghe KJC, Miller AL, Sider JR, Bement WM. Action at a distance during cytokinesis. J Cell Biol 2009; 187:831-45. [PMID: 20008563 PMCID: PMC2806324 DOI: 10.1083/jcb.200907090] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/16/2009] [Indexed: 01/12/2023] Open
Abstract
Animal cells decide where to build the cytokinetic apparatus by sensing the position of the mitotic spindle. Reflecting a long-standing presumption that a furrow-inducing stimulus travels from spindle to cortex via microtubules, debate continues about which microtubules, and in what geometry, are essential for accurate cytokinesis. We used live imaging in urchin and frog embryos to evaluate the relationship between microtubule organization and cytokinetic furrow position. In normal cells, the cytokinetic apparatus forms in a region of lower cortical microtubule density. Remarkably, cells depleted of astral microtubules conduct accurate, complete cytokinesis. Conversely, in anucleate cells, asters alone can support furrow induction without a spindle, but only when sufficiently separated. Ablation of a single centrosome displaces furrows away from the remaining centrosome; ablation of both centrosomes causes broad, inefficient furrowing. We conclude that the asters confer accuracy and precision to a primary furrow-inducing signal that can reach the cell surface from the spindle without transport on microtubules.
Collapse
Affiliation(s)
- George von Dassow
- Center for Cell Dynamics, Friday Harbor Laboratories, University of Washington, Seattle, WA 98250, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Centrosomin (CNN), a core Drosophila centrosome protein, interacts with the newly identified protein Centrocortin to promote cleavage furrow formation in the early embryo. Significantly, this activity is distinct from CNN's well-established role in centrosome-based microtubule organization.
Collapse
Affiliation(s)
- William Sullivan
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95066, USA.
| |
Collapse
|
38
|
von Dassow G. Concurrent cues for cytokinetic furrow induction in animal cells. Trends Cell Biol 2009; 19:165-73. [PMID: 19285868 DOI: 10.1016/j.tcb.2009.01.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/19/2009] [Accepted: 01/27/2009] [Indexed: 01/23/2023]
Abstract
Animal cells are deformable, yet live together bound into tissues. Consequently, physical perturbations imposed by neighbors threaten to disrupt the spatial coordination of cell cleavage with chromosome segregation during mitosis. Emerging evidence demonstrates that animal cells integrate multiple positional cues during cleavage-furrow induction, perhaps to facilitate error correction. Classical work indicated that the asters provide the stimulus for furrow induction, but recent results implicate the central spindle at least as much. Similarly, although classical work concluded that the stimulus occurs at the cell equator, new evidence shows that asters modulate cortical contractility outside the equator as well. Meanwhile, a newly revealed distinction between stable and dynamic astral microtubules suggests that these subsets might have complementary effects on furrow induction.
Collapse
Affiliation(s)
- George von Dassow
- Oregon Institute of Marine Biology, University of Oregon, Charleston, 97420, USA.
| |
Collapse
|
39
|
Su L, Pertz O, Mikawa M, Hahn K, Parsons SJ. p190RhoGAP negatively regulates Rho activity at the cleavage furrow of mitotic cells. Exp Cell Res 2009; 315:1347-59. [PMID: 19254711 DOI: 10.1016/j.yexcr.2009.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 12/30/2022]
Abstract
Previous studies demonstrated that p190RhoGAP (p190) negatively affects cytokinesis in a RhoGAP-dependent manner, suggesting that regulation of Rho may be a critical mechanism of p190 action during cytokinesis. P190 localizes to the cleavage furrow (CF) of dividing cells, and its levels decrease during late mitosis by an ubiquitin-mediated mechanism, consistent with the hypothesis that high RhoGTP levels are required for completion of cytokinesis. To determine whether RhoGTP levels in the CF are affected by p190 and to define the phase(s) of cytokinesis in which p190 is involved, we used FRET analysis alone or in combination with time-lapse microscopy. In normal cell division activated Rho accumulated at the cell equator in early anaphase and in the contractile ring, where it co-localized with p190. Real-time movies revealed that cells expressing elevated levels of p190 exhibited multiple cycles of abnormal CF site selection and ingression/regression, which resulted in failed or prolonged cytokinesis. This was accompanied by mislocalization of active Rho at the aberrant CF sites. Quantified data revealed that in contrast to ECT2 and dominate negative p190 (Y1283Ap190), which resulted in hyper-activated Rho, Rho activity in the CF was reduced by wild type p190 in a dose-dependent manner. These results suggest that p190 regulates cytokinesis through modulation of RhoGTP levels, thereby affecting CF specification site selection and subsequent ring contraction.
Collapse
Affiliation(s)
- Ling Su
- Department of Microbiology and Cancer Center, University of Virginia Health System, P O Box 800734, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
40
|
Howard M. Cell division: experiments and modelling unite to resolve the middle. Curr Biol 2009; 19:R67-9. [PMID: 19174141 DOI: 10.1016/j.cub.2008.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
How does a cell find its middle? New experiments confirm that activating stable microtubules together with inhibitory dynamic microtubules are key ingredients. Quantitative modelling has now further scrutinised these ideas, yielding fresh insights into furrow positioning.
Collapse
Affiliation(s)
- Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
41
|
Asiedu M, Wu D, Matsumura F, Wei Q. Centrosome/spindle pole-associated protein regulates cytokinesis via promoting the recruitment of MyoGEF to the central spindle. Mol Biol Cell 2009; 20:1428-40. [PMID: 19129481 DOI: 10.1091/mbc.e08-01-0001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cooperative communications between the central spindle and the contractile ring are critical for the spatial and temporal regulation of cytokinesis. Here we report that MyoGEF, a guanine nucleotide exchange factor that localizes to the central spindle and cleavage furrow, interacts with centrosome/spindle pole-associated protein (CSPP), which is concentrated at the spindle pole and central spindle during mitosis and cytokinesis. Both in vitro and in vivo pulldown assays show that MyoGEF interacts with CSPP. The C-terminus of MyoGEF and N-terminus of CSPP are required for their interaction. Immunofluorescence analysis indicates that MyoGEF and CSPP colocalize at the central spindle. Depletion of CSPP or MyoGEF by RNA-interference (RNAi) not only causes defects in mitosis and cytokinesis, such as metaphase arrest and furrow regression, but also mislocalization of nonmuscle myosin II with a phosphorylated myosin regulatory light chain (p-MRLC). Importantly, CSPP depletion by RNAi interferes with MyoGEF localization at the central spindle. Finally, MyoGEF interacts with ECT2, and RNAi-mediated depletion of MyoGEF leads to mislocalization of ECT2 and RhoA during cytokinesis. Therefore, we propose that CSPP interacts with and recruits MyoGEF to the central spindle, where MyoGEF contributes to the spatiotemporal regulation of cytokinesis.
Collapse
Affiliation(s)
- Michael Asiedu
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
42
|
Chen W, Foss M, Tseng KF, Zhang D. Redundant mechanisms recruit actin into the contractile ring in silkworm spermatocytes. PLoS Biol 2008; 6:e209. [PMID: 18767903 PMCID: PMC2528054 DOI: 10.1371/journal.pbio.0060209] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/17/2008] [Indexed: 11/24/2022] Open
Abstract
Cytokinesis is powered by the contraction of actomyosin filaments within the newly assembled contractile ring. Microtubules are a spindle component that is essential for the induction of cytokinesis. This induction could use central spindle and/or astral microtubules to stimulate cortical contraction around the spindle equator (equatorial stimulation). Alternatively, or in addition, induction could rely on astral microtubules to relax the polar cortex (polar relaxation). To investigate the relationship between microtubules, cortical stiffness, and contractile ring assembly, we used different configurations of microtubules to manipulate the distribution of actin in living silkworm spermatocytes. Mechanically repositioned, noninterdigitating microtubules can induce redistribution of actin at any region of the cortex by locally excluding cortical actin filaments. This cortical flow of actin promotes regional relaxation while increasing tension elsewhere (normally at the equatorial cortex). In contrast, repositioned interdigitating microtubule bundles use a novel mechanism to induce local stimulation of contractility anywhere within the cortex; at the antiparallel plus ends of central spindle microtubules, actin aggregates are rapidly assembled de novo and transported laterally to the equatorial cortex. Relaxation depends on microtubule dynamics but not on RhoA activity, whereas stimulation depends on RhoA activity but is largely independent of microtubule dynamics. We conclude that polar relaxation and equatorial stimulation mechanisms redundantly supply actin for contractile ring assembly, thus increasing the fidelity of cleavage. In animal cells, the last step of cell division, or cytokinesis, requires the action of a contractile ring—composed largely of actin and myosin filaments—that cleaves the cell in two. Before the cell divides, it first duplicates its genome and separates the chromosomes into the two newly forming daughter cells, a task carried out by a structure called the spindle apparatus, which is composed mostly of long polymers called microtubules. The site of cleavage must occur between the segregating chromosomes—at the spindle equator—to ensure that each cell receives the proper number of chromosomes. In addition to separating the chromosomes, microtubules are also essential for inducing cytokinesis—but how they do this is controversial. For example, the “polar relaxation” hypothesis proposes that the astral microtubules, which radiate outward, cause contractile elements to flow from the polar cortex toward the equator, resulting in furrowing. In contrast, the “equatorial stimulation” hypothesis proposes that the spindle microtubules directly stimulate cleavage exclusively at the equator. Using a novel approach, we demonstrate that both mechanisms are in fact functioning together to recruit actin filaments to the nascent ring, providing redundancy that increases fidelity. Specifically, we were able to mechanically alter the distribution of actin filaments in living, dividing cells by using a microscopic needle to manipulate microtubules while perturbing the cytoskeleton with chemical compounds. Our high-resolution microscopy data advance the understanding of both proposed mechanisms. We also documented a novel, microtubule-based mechanism for transporting actin aggregates to the equatorial cortex. These results help to resolve a long-standing dispute concerning this fundamental cellular process. How is actin recruited to assemble a contractile ring during cytokinesis? Combining micromanipulation with pharmacological perturbation, this comprehensive study elegantly documents the contributions of two complementary mechanisms within one cell.
Collapse
Affiliation(s)
- Wei Chen
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Margit Foss
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Kuo-Fu Tseng
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Dahong Zhang
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing (CGRB), Oregon State University, Corvallis, Oregon, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Progress towards understanding the mechanism of cytokinesis in fission yeast. Biochem Soc Trans 2008; 36:425-30. [PMID: 18481973 DOI: 10.1042/bst0360425] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We use fission yeast to study the molecular mechanism of cytokinesis. We benefit from a long history in genetic analysis of the cell cycle in fission yeast, which provided the most complete inventory of cytokinesis proteins. We used fluorescence microscopy of proteins tagged with fluorescent proteins to establish the temporal and spatial pathway for the assembly and constriction of the contractile ring. We combined biochemical analysis of purified proteins (myosin-II, profilin, formin Cdc12p and cofilin), observations of fluorescent fusion proteins in live cells and mathematical modelling to formulate and test a simple hypothesis for the assembly of the contractile ring. This model involves the formation of 65 nodes containing myosin-II and formin Cdc12p around the equator of the cell. As a cell enters anaphase, actin filaments grow from formin Cdc12p in these nodes. Myosin captures actin filaments from adjacent nodes and pulls intermittently to condense the nodes into a contractile ring.
Collapse
|
44
|
Foe VE, von Dassow G. Stable and dynamic microtubules coordinately shape the myosin activation zone during cytokinetic furrow formation. J Cell Biol 2008; 183:457-70. [PMID: 18955555 PMCID: PMC2575787 DOI: 10.1083/jcb.200807128] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 09/05/2008] [Indexed: 01/29/2023] Open
Abstract
The cytokinetic furrow arises from spatial and temporal regulation of cortical contractility. To test the role microtubules play in furrow specification, we studied myosin II activation in echinoderm zygotes by assessing serine19-phosphorylated regulatory light chain (pRLC) localization after precisely timed drug treatments. Cortical pRLC was globally depressed before cytokinesis, then elevated only at the equator. We implicated cell cycle biochemistry (not microtubules) in pRLC depression, and differential microtubule stability in localizing the subsequent myosin activation. With no microtubules, pRLC accumulation occurred globally instead of equatorially, and loss of just dynamic microtubules increased equatorial pRLC recruitment. Nocodazole treatment revealed a population of stable astral microtubules that formed during anaphase; among these, those aimed toward the equator grew longer, and their tips coincided with cortical pRLC accumulation. Shrinking the mitotic apparatus with colchicine revealed pRLC suppression near dynamic microtubule arrays. We conclude that opposite effects of stable versus dynamic microtubules focuses myosin activation to the cell equator during cytokinesis.
Collapse
Affiliation(s)
- Victoria E Foe
- The Center for Cell Dynamics, University of Washington, Friday Harbor, WA 98250, USA.
| | | |
Collapse
|
45
|
Henson JH, Fried CA, McClellan MK, Ader J, Davis JE, Oldenbourg R, Simerly CR. Bipolar, anastral spindle development in artificially activated sea urchin eggs. Dev Dyn 2008; 237:1348-58. [PMID: 18393308 PMCID: PMC2386260 DOI: 10.1002/dvdy.21533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The mitotic apparatus of the early sea urchin embryo is the archetype example of a centrosome-dominated, large aster spindle organized by means of the centriole of the fertilizing sperm. In this study, we tested the hypothesis that artificially activated sea urchin eggs possess the capacity to assemble the anastral, bipolar spindles present in many acentrosomal systems. Control fertilized Lytechinus pictus embryos and ammonia-activated eggs were immunolabeled for tubulin, centrosomal material, the spindle pole structuring protein NuMA and the mitotic kinesins MKLP1/Kinesin-6, Eg5/Kinesin-5, and KinI/Kinesin-13. Confocal imaging showed that a subset of ammonia-activated eggs contained bipolar "mini-spindles" that were anastral; displayed metaphase and anaphase-like stages; labeled for centrosomal material, NuMA, and the three mitotic kinesins; and were observed in living eggs using polarization optics. These results suggest that spindle structural and motor proteins have the ability to organize bipolar, anastral spindles in sea urchin eggs activated in the absence of the paternal centriole.
Collapse
Affiliation(s)
- John H Henson
- Department of Biology, Dickinson College, Carlisle, Pennsylvania 17013, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Lis1/dynactin regulates metaphase spindle orientation in Drosophila neuroblasts. Dev Biol 2008; 319:1-9. [PMID: 18485341 DOI: 10.1016/j.ydbio.2008.03.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 12/22/2022]
Abstract
Mitotic spindle orientation in polarized cells determines whether they divide symmetrically or asymmetrically. Moreover, regulated spindle orientation may be important for embryonic development, stem cell biology, and tumor growth. Drosophila neuroblasts align their spindle along an apical/basal cortical polarity axis to self-renew an apical neuroblast and generate a basal differentiating cell. It is unknown whether spindle alignment requires both apical and basal cues, nor have molecular motors been identified that regulate spindle movement. Using live imaging of neuroblasts within intact larval brains, we detect independent movement of both apical and basal spindle poles, suggesting that forces act on both poles. We show that reducing astral microtubules decreases the frequency of spindle movement, but not its maximum velocity, suggesting that one or few microtubules can move the spindle. Mutants in the Lis1/dynactin complex strongly decrease maximum and average spindle velocity, consistent with this motor complex mediating spindle/cortex forces. Loss of either astral microtubules or Lis1/dynactin leads to spindle/cortical polarity alignment defects at metaphase, but these are rescued by telophase. We propose that an early Lis1/dynactin-dependent pathway and a late Lis1/dynactin-independent pathway regulate neuroblast spindle orientation.
Collapse
|
47
|
George O, Bryant BK, Chinnasamy R, Corona C, Arterburn JB, Shuster CB. Bisphenol A directly targets tubulin to disrupt spindle organization in embryonic and somatic cells. ACS Chem Biol 2008; 3:167-79. [PMID: 18225860 PMCID: PMC3844426 DOI: 10.1021/cb700210u] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is increasing concern that animal and human reproduction may be adversely affected by exposure to xenoestrogens that activate estrogen receptors. There is evidence that one such compound, Bisphenol A (BPA), also induces meiotic and mitotic aneuploidy, suggesting that these kinds of molecules may also have effects on cell division. In an effort to understand how Bisphenol A might disrupt cell division, a phenotypic analysis was carried out using sea urchin eggs, whose early embryonic divisions are independent of zygotic transcription. Fertilized Lytechinus pictus eggs exposed to BPA formed multipolar spindles resulting in failed cytokinesis in a dose-dependent, transcriptionally independent manner. By use of novel biotinylated BPA affinity probes to fractionate cell-free extracts, tubulin was identified as a candidate binding protein by mass spectrometry, and BPA promoted microtubule polymerization and centrosome-based microtubule nucleation in vitro but did not appear to display microtubule-stabilizing activity. Treatment of mammalian cells demonstrated that BPA as well as a series of Bisphenol A derivatives induced ectopic spindle pole formation in the absence of centrosome overduplication. Together, these results suggest a novel mechanism by which Bisphenol A affects the nucleation of microtubules, disrupting the tight spatial control associated with normal chromosome segregation, resulting in aneuploidy.
Collapse
Affiliation(s)
- Olivia George
- Department of Biology, New Mexico State University, Las Cruces NM, 88003
- the Marine Biological Laboratory, Woods Hole MA 02543
| | - Bj K. Bryant
- Department of Biochemistry and Chemistry, New Mexico State University, Las Cruces NM, 88003
| | - Ramesh Chinnasamy
- Department of Biochemistry and Chemistry, New Mexico State University, Las Cruces NM, 88003
| | - Cesear Corona
- Department of Biochemistry and Chemistry, New Mexico State University, Las Cruces NM, 88003
| | - Jeffrey B. Arterburn
- Department of Biochemistry and Chemistry, New Mexico State University, Las Cruces NM, 88003
| | - Charles B. Shuster
- Department of Biology, New Mexico State University, Las Cruces NM, 88003
- the Marine Biological Laboratory, Woods Hole MA 02543
| |
Collapse
|
48
|
Inn1 couples contraction of the actomyosin ring to membrane ingression during cytokinesis in budding yeast. Nat Cell Biol 2008; 10:395-406. [PMID: 18344988 DOI: 10.1038/ncb1701] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/21/2008] [Indexed: 01/26/2023]
Abstract
By rapidly depleting each of the essential budding yeast proteins of unknown function, we identified a novel factor that we call Inn1, which associates with the contractile actomyosin ring at the end of mitosis and is needed for cytokinesis. We show that Inn1 has a C2 domain at the amino terminus of the protein that is required for ingression of the plasma membrane, whereas the remainder of the protein recruits Inn1 to the actomyosin ring. The lethal effects of deleting the INN1 gene can be suppressed by artificial fusion of the C2 domain to other components of the actomyosin ring, restoring membrane ingression on contraction of the actomyosin ring. Our data indicate that recruitment of the C2 domain of Inn1 to the contractile actomyosin ring is crucial for ingression of the plasma membrane during cytokinesis in budding yeast.
Collapse
|
49
|
Chang YC, Nalbant P, Birkenfeld J, Chang ZF, Bokoch GM. GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. Mol Biol Cell 2008; 19:2147-53. [PMID: 18287519 DOI: 10.1091/mbc.e07-12-1269] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The RhoA GTPase plays a vital role in assembly of contractile actin-myosin filaments (stress fibers) and of associated focal adhesion complexes of adherent monolayer cells in culture. GEF-H1 is a microtubule-associated guanine nucleotide exchange factor that activates RhoA upon release from microtubules. The overexpression of GEF-H1 deficient in microtubule binding or treatment of HeLa cells with nocodazole to induce microtubule depolymerization results in Rho-dependent actin stress fiber formation and contractile cell morphology. However, whether GEF-H1 is required and sufficient to mediate nocodazole-induced contractility remains unclear. We establish here that siRNA-mediated depletion of GEF-H1 in HeLa cells prevents nocodazole-induced cell contraction. Furthermore, the nocodazole-induced activation of RhoA and Rho-associated kinase (ROCK) that mediates phosphorylation of myosin regulatory light chain (MLC) is impaired in GEF-H1-depleted cells. Conversely, RhoA activation and contractility are rescued by reintroduction of siRNA-resistant GEF-H1. Our studies reveal a critical role for a GEF-H1/RhoA/ROCK/MLC signaling pathway in mediating nocodazole-induced cell contractility.
Collapse
Affiliation(s)
- Yuan-Chen Chang
- Departments of Immunology and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
50
|
Pinar M, Coll PM, Rincón SA, Pérez P. Schizosaccharomyces pombe Pxl1 is a paxillin homologue that modulates Rho1 activity and participates in cytokinesis. Mol Biol Cell 2008; 19:1727-38. [PMID: 18256290 DOI: 10.1091/mbc.e07-07-0718] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Schizosaccharomyces pombe Rho GTPases regulate actin cytoskeleton organization and cell integrity. We studied the fission yeast gene SPBC4F6.12 based on its ability to suppress the thermosensitivity of cdc42-1625 mutant strain. This gene, named pxl1(+), encodes a protein with three LIM domains that is similar to paxillin. Pxl1 does not interact with Cdc42 but it interacts with Rho1, and it negatively regulates this GTPase. Fission yeast Pxl1 forms a contractile ring in the cell division region and deletion of pxl1(+) causes a delay in cell-cell separation, suggesting that it has a function in cytokinesis. Pxl1 N-terminal region is required and sufficient for its localization to the medial ring, whereas the LIM domains are necessary for its function. Pxl1 localization requires actin polymerization and the actomyosin ring, but it is independent of the septation initiation network (SIN) function. Moreover, Pxl1 colocalizes and interacts with Myo2, and Cdc15, suggesting that it is part of the actomyosin ring. Here, we show that in cells lacking Pxl1, the myosin ring is not correctly assembled and that actomyosin ring contraction is delayed. Together, these data suggest that Pxl1 modulates Rho1 GTPase signaling and plays a role in the formation and contraction of the actomyosin ring during cytokinesis.
Collapse
Affiliation(s)
- Mario Pinar
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas/Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|