1
|
Korablev AV, Sesorova IS, Sesorov VV, Vavilov PS, Mironov A, Zaitseva AV, Bedyaev EV, Mironov AA. New Interpretations for Sprouting, Intussusception, Ansiform, and Coalescent Types of Angiogenesis. Int J Mol Sci 2024; 25:8575. [PMID: 39201261 PMCID: PMC11354496 DOI: 10.3390/ijms25168575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Angiogenesis, or the development of blood vessels by growing from already-formed vessels, is observed in embryonic development, physiological cyclical processes such as wound healing, the encapsulation of foreign bodies, tumor growth, and some other situations. In this review, we analyze the cellular mechanisms of angiogenesis, namely, angiogenesis by sprouting, ansiform (by loop formation) angiogenesis, coalescent angiogenesis, and angiogenesis by intussusception (splitting the capillary into two channels). The analysis of data revealed a lot of unanswered questions and contradictions. Here, we propose several new models of angiogenesis explaining these contradictions.
Collapse
Affiliation(s)
- Alexander V. Korablev
- Department of Pathological Anatomy, Yaroslavl State Medical University, Yaroslavl 150000, Russia
| | - Irina S. Sesorova
- Department of Anatomy and Topographic Anatomy, Ivanovo State Medical University, Ivanovo 153012, Russia; (I.S.S.); (V.V.S.); (P.S.V.); (E.V.B.)
| | - Vitaly V. Sesorov
- Department of Anatomy and Topographic Anatomy, Ivanovo State Medical University, Ivanovo 153012, Russia; (I.S.S.); (V.V.S.); (P.S.V.); (E.V.B.)
| | - Pavel S. Vavilov
- Department of Anatomy and Topographic Anatomy, Ivanovo State Medical University, Ivanovo 153012, Russia; (I.S.S.); (V.V.S.); (P.S.V.); (E.V.B.)
| | - Anna Mironov
- Sacco Hospital, Universita degli Studi di Milano, 20122 Milan, Italy;
| | - Anna V. Zaitseva
- Department of Anatomy, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia;
| | - Eugeny V. Bedyaev
- Department of Anatomy and Topographic Anatomy, Ivanovo State Medical University, Ivanovo 153012, Russia; (I.S.S.); (V.V.S.); (P.S.V.); (E.V.B.)
| | - Alexander A. Mironov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| |
Collapse
|
2
|
Legátová A, Pelantová M, Rösel D, Brábek J, Škarková A. The emerging role of microtubules in invasion plasticity. Front Oncol 2023; 13:1118171. [PMID: 36860323 PMCID: PMC9969133 DOI: 10.3389/fonc.2023.1118171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The ability of cells to switch between different invasive modes during metastasis, also known as invasion plasticity, is an important characteristic of tumor cells that makes them able to resist treatment targeted to a particular invasion mode. Due to the rapid changes in cell morphology during the transition between mesenchymal and amoeboid invasion, it is evident that this process requires remodeling of the cytoskeleton. Although the role of the actin cytoskeleton in cell invasion and plasticity is already quite well described, the contribution of microtubules is not yet fully clarified. It is not easy to infer whether destabilization of microtubules leads to higher invasiveness or the opposite since the complex microtubular network acts differently in diverse invasive modes. While mesenchymal migration typically requires microtubules at the leading edge of migrating cells to stabilize protrusions and form adhesive structures, amoeboid invasion is possible even in the absence of long, stable microtubules, albeit there are also cases of amoeboid cells where microtubules contribute to effective migration. Moreover, complex crosstalk of microtubules with other cytoskeletal networks participates in invasion regulation. Altogether, microtubules play an important role in tumor cell plasticity and can be therefore targeted to affect not only cell proliferation but also invasive properties of migrating cells.
Collapse
Affiliation(s)
- Anna Legátová
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Markéta Pelantová
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Daniel Rösel
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Jan Brábek
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Aneta Škarková
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia,*Correspondence: Aneta Škarková,
| |
Collapse
|
3
|
Lee D, Hong JH. Ca 2+ Signaling as the Untact Mode during Signaling in Metastatic Breast Cancer. Cancers (Basel) 2021; 13:1473. [PMID: 33806911 PMCID: PMC8004807 DOI: 10.3390/cancers13061473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 01/06/2023] Open
Abstract
Metastatic features of breast cancer in the brain are considered a common pathology in female patients with late-stage breast cancer. Ca2+ signaling and the overexpression pattern of Ca2+ channels have been regarded as oncogenic markers of breast cancer. In other words, breast tumor development can be mediated by inhibiting Ca2+ channels. Although the therapeutic potential of inhibiting Ca2+ channels against breast cancer has been demonstrated, the relationship between breast cancer metastasis and Ca2+ channels is not yet understood. Thus, we focused on the metastatic features of breast cancer and summarized the basic mechanisms of Ca2+-related proteins and channels during the stages of metastatic breast cancer by evaluating Ca2+ signaling. In particular, we highlighted the metastasis of breast tumors to the brain. Thus, modulating Ca2+ channels with Ca2+ channel inhibitors and combined applications will advance treatment strategies for breast cancer metastasis to the brain.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Korea;
| |
Collapse
|
4
|
Hu Y, Lou J, Jin Z, Yang X, Shan W, Du Q, Liao Q, Xu J, Xie R. Advances in research on the regulatory mechanism of NHE1 in tumors. Oncol Lett 2021; 21:273. [PMID: 33717270 PMCID: PMC7885159 DOI: 10.3892/ol.2021.12534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Tumors pose a major threat to human health and present with difficulties that modern medicine has yet to overcome. It has been demonstrated that the acid-base balance of the tumor microenvironment is closely associated with the dynamic balance in the human body and that it regulates several processes, such as cell proliferation and differentiation, intracellular enzyme activity, and cytoskeletal assembly and depolymerization. It has been well established that the regulation of intra- and extracellular pH depends on a series of functional ion transporters and hydrogen ion channels, such as the Na+/H+ exchanger (NHE) protein and thee Cl/HCO3- exchange protein, among which the NHE1 member of the NHE family has been attracting increasing attention in recent years, particularly in studies on the correlation between pH regulation and tumors. NHE1 is a housekeeping gene encoding a protein that is widely expressed on the surface of all plasma membranes. Due to its functional domain, which determines the pHi at its N-terminus and C-terminus, NHE1 is involved in the regulation of the cellular pH microenvironment. It has been reported in the literature that NHE1 can regulate cell volume, participate in the transmembrane transport of intracellular and extracellular ions, affect cell proliferation and apoptosis, and regulate cell behavior and cell cycle progression; however, research on the role of NHE1 in tumorigenesis and tumor development in various systems is at its early stages. The aim of the present study was to review the current research on the correlation between the NHE family proteins and various systemic tumors, in order to indicate a new direction for antitumor drug development with the pH microenvironment as the target.
Collapse
Affiliation(s)
- Yanxia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xiaoxu Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Weixi Shan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
5
|
Abstract
Historically, small molecules, including steroid hormones and cytokines, have been attributed a role in paracrine and endocrine signaling, and now include a new player: biological nanoparticles, or 'exosomes'. Generated intracellularly, and defined simply as nanoparticulate packages of signaling moieties, exosomes have emerged as vehicles for highly specialized local and distant intercellular communication. Exosomes are increasingly being recognized as contributing factors in many diseases, and their potential as biomarkers and in therapeutics is rapidly emerging. This review highlights recent advances in the exploitation of exosomes in diagnostic and therapeutic applications. We discuss various facets of nanoparticles, namely the isolation and manipulation of exosomes, the construction of synthetic exosome-like particles in vivo, and their potential use in the treatment of various diseases.
Collapse
|
6
|
Chen YW, Lai CS, Chen YF, Chiu WT, Chen HC, Shen MR. STIM1-dependent Ca 2+ signaling regulates podosome formation to facilitate cancer cell invasion. Sci Rep 2017; 7:11523. [PMID: 28912430 PMCID: PMC5599537 DOI: 10.1038/s41598-017-11273-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
The clinical significance of STIM proteins and Orai Ca2+ channels in tumor progression has been demonstrated in different types of cancers. Podosomes are dynamic actin-rich cellular protrusions that facilitate cancer cell invasiveness by degrading extracellular matrix. Whether STIM1-dependent Ca2+ signaling facilitates cancer cell invasion through affecting podosome formation remains unclear. Here we show that the invasive fronts of cancer tissues overexpress STIM1, accompanied by active store-operated Ca2+ entry (SOCE). Interfering SOCE activity by SOCE inhibitors and STIM1 or Orai1 knockdown remarkably affects podosome rosettes formation. Mechanistically, STIM1-silencing significantly alters the podosome rosettes dynamics, shortens the maintenance phase of podosome rosettes and reduces cell invasiveness. The subsequently transient expression of STIM1 cDNA in STIM1-null (STIM1−/−) mouse embryo fibroblasts rescues the suppression of podosome formation, suggesting that STIM1-mediated SOCE activation directly regulates podosome formation. This study uncovers SOCE-mediated Ca2+ microdomain that is the molecular basis for Ca2+ sensitivity controlling podosome formation.
Collapse
Affiliation(s)
- Yun-Wen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chieh-Shan Lai
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Chen Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Meng-Ru Shen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
7
|
Bati-Ayaz G, Can A, Pesen-Okvur D. Cellular distribution of invadopodia is regulated by nanometer scale surface protein patterns. Eur J Cell Biol 2017; 96:673-684. [PMID: 28847588 DOI: 10.1016/j.ejcb.2017.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 06/26/2017] [Accepted: 08/14/2017] [Indexed: 10/25/2022] Open
Abstract
Invadopodia are proteolytic structures formed by cancer cells. It is not known whether their cellular distribution can be regulated by the organization of the extracellular matrix or the organization of the golgi complex or whether they have an adhesion requirement. Here, we used electron beam lithography to fabricate fibronectin (FN) nanodots with isotropic and gradient micrometer scale spacings on K-casein and laminin backgrounds. Investigating cancer cells cultured on protein nanopatterns, we showed that (i) presence of FN nanodots on a K-casein background decreased percent of cells with neutral invadopodia polarization compared to FN control surfaces; (ii) presence of a gradient of FN nanodots on a K-casein background increased percent of cells with negative invadopodia polarization compared to FN control surfaces; (iii) polarization of the golgi complex was similar to that of invadopodia in agreement with a spatial link; (iv) local adhesion did not necessarily appear to be a prerequisite for invadopodia formation.
Collapse
Affiliation(s)
- Gizem Bati-Ayaz
- Izmir Institute of Technology, Graduate Program in Biotechnology and Bioengineering, Turkey
| | - Ali Can
- Izmir Institute of Technology, Graduate Program in Biotechnology and Bioengineering, Turkey
| | - Devrim Pesen-Okvur
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, Turkey.
| |
Collapse
|
8
|
Different Golgi ultrastructure across species and tissues: Implications under functional and pathological conditions, and an attempt at classification. Tissue Cell 2017; 49:186-201. [DOI: 10.1016/j.tice.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 02/08/2023]
|
9
|
Nishita M, Park SY, Nishio T, Kamizaki K, Wang Z, Tamada K, Takumi T, Hashimoto R, Otani H, Pazour GJ, Hsu VW, Minami Y. Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Sci Rep 2017; 7:1. [PMID: 28127051 PMCID: PMC5428335 DOI: 10.1038/s41598-016-0028-x] [Citation(s) in RCA: 8483] [Impact Index Per Article: 1060.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023] Open
Abstract
Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation in achieving polarized secretion for cell migration and invasion. Furthermore, IFT20 promotes the efficiency of transport through the Golgi complex. These findings shed new insights into how Ror2 signaling promotes tumor invasiveness, and also advance the understanding of how Golgi structure and transport can be regulated.
Collapse
Affiliation(s)
- Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan.
| | - Seung-Yeol Park
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Tadashi Nishio
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan
| | - ZhiChao Wang
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, 351-0198, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, 351-0198, Japan
| | - Ryuju Hashimoto
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, 690-8504, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, 690-8504, Japan
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Victor W Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
10
|
El Azzouzi K, Wiesner C, Linder S. Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence. J Cell Biol 2016; 213:109-25. [PMID: 27069022 PMCID: PMC4828691 DOI: 10.1083/jcb.201510043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/02/2016] [Indexed: 12/11/2022] Open
Abstract
The authors find that matrix metalloproteinase MT1-MMP is enriched at the plasma membrane of macrophage podosomes, where it persists beyond podosome lifetime and, through binding to the subcortical actin cytoskeleton, forms subcellular signposts that facilitate podosome reformation. Podosomes are dynamic cell adhesions that are also sites of extracellular matrix degradation, through recruitment of matrix-lytic enzymes, particularly of matrix metalloproteinases. Using total internal reflection fluorescence microscopy, we show that the membrane-bound metalloproteinase MT1-MMP is enriched not only at podosomes but also at distinct “islets” embedded in the plasma membrane of primary human macrophages. MT1-MMP islets become apparent upon podosome dissolution and persist beyond podosome lifetime. Importantly, the majority of MT1-MMP islets are reused as sites of podosome reemergence. siRNA-mediated knockdown and recomplementation analyses show that islet formation is based on the cytoplasmic tail of MT1-MMP and its ability to bind the subcortical actin cytoskeleton. Collectively, our data reveal a previously unrecognized phase in the podosome life cycle and identify a structural function of MT1-MMP that is independent of its proteolytic activity. MT1-MMP islets thus act as cellular memory devices that enable efficient and localized reformation of podosomes, ensuring coordinated matrix degradation and invasion.
Collapse
Affiliation(s)
- Karim El Azzouzi
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| | - Christiane Wiesner
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
11
|
Ruggiero C, Fragassi G, Grossi M, Picciani B, Di Martino R, Capitani M, Buccione R, Luini A, Sallese M. A Golgi-based KDELR-dependent signalling pathway controls extracellular matrix degradation. Oncotarget 2016; 6:3375-93. [PMID: 25682866 PMCID: PMC4413660 DOI: 10.18632/oncotarget.3270] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/12/2014] [Indexed: 12/24/2022] Open
Abstract
We recently identified an endomembrane-based signalling cascade that is activated by the KDEL receptor (KDELR) on the Golgi complex. At the Golgi, the KDELR acts as a traffic sensor (presumably via binding to chaperones that leave the ER) and triggers signalling pathways that balance membrane fluxes between ER and Golgi. One such pathway relies on Gq and Src. Here, we examine if KDELR might control other cellular modules through this pathway. Given the central role of Src in extracellular matrix (ECM) degradation, we investigated the impact of the KDELR-Src pathway on the ability of cancer cells to degrade the ECM. We find that activation of the KDELR controls ECM degradation by increasing the number of the degradative structures known as invadopodia. The KDELR induces Src activation at the invadopodia and leads to phosphorylation of the Src substrates cortactin and ASAP1, which are required for basal and KDELR-stimulated ECM degradation. This study furthers our understanding of the regulatory circuitry underlying invadopodia-dependent ECM degradation, a key phase in metastases formation and invasive growth.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy.,Current address: Institut de Pharmacologie Moléculaire et Cellulaire CNRS and Associated International Laboratory (LIA) NEOGENEX CNRS and University of Nice-Sophia-Antipolis, Valbonne, France
| | - Giorgia Fragassi
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Mauro Grossi
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Benedetta Picciani
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Rosaria Di Martino
- Institute of Protein Biochemistry National Research Council, Naples, Italy
| | - Mirco Capitani
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Roberto Buccione
- Laboratory of Tumour Cell Invasion, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry National Research Council, Naples, Italy
| | - Michele Sallese
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| |
Collapse
|
12
|
González-Fernández Y, Zalacain M, Imbuluzqueta E, Sierrasesumaga L, Patiño-García A, Blanco-Prieto MJ. Lipid nanoparticles enhance the efficacy of chemotherapy in primary and metastatic human osteosarcoma cells. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Gould CM, Courtneidge SA. Regulation of invadopodia by the tumor microenvironment. Cell Adh Migr 2015; 8:226-35. [PMID: 24714597 DOI: 10.4161/cam.28346] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment consists of stromal cells, extracellular matrix (ECM), and signaling molecules that communicate with cancer cells. As tumors grow and develop, the tumor microenvironment changes. In addition, the tumor microenvironment is not only influenced by signals from tumor cells, but also stromal components contribute to tumor progression and metastasis by affecting cancer cell function. One of the mechanisms that cancer cells use to invade and metastasize is mediated by actin-rich, proteolytic structures called invadopodia. Here, we discuss how signals from the tumor environment, including growth factors, hypoxia, pH, metabolism, and stromal cell interactions, affect the formation and function of invadopodia to regulate cancer cell invasion and metastasis. Understanding how the tumor microenvironment affects invadopodia biology could aid in the development of effective therapeutics to target cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Christine M Gould
- Tumor Microenvironment and Metastasis Program; Cancer Center; Sanford-Burnham Medical Research Institute; La Jolla, CA USA
| | - Sara A Courtneidge
- Tumor Microenvironment and Metastasis Program; Cancer Center; Sanford-Burnham Medical Research Institute; La Jolla, CA USA
| |
Collapse
|
14
|
Mittelbrunn M, Vicente Manzanares M, Sánchez-Madrid F. Organizing polarized delivery of exosomes at synapses. Traffic 2015; 16:327-337. [PMID: 25614958 DOI: 10.1111/tra.12258] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/01/2015] [Accepted: 01/05/2015] [Indexed: 12/12/2022]
Abstract
Exosomes are extracellular vesicles that transport different molecules between cells. They are formed and stored inside multivesicular bodies (MVB) until they are released to the extracellular environment. MVB fuse along the plasma membrane, driving non-polarized secretion of exosomes. However, polarized signaling potentially directs MVBs to a specific point in the plasma membrane to mediate a focal delivery of exosomes. MVB polarization occurs across a broad set of cellular situations, e.g. in immune and neuronal synapses, cell migration and in epithelial sheets. In this review, we summarize the current state of the art of polarized MVB docking and the specification of secretory sites at the plasma membrane. The current view is that MVB positioning and subsequent exosome delivery requires a polarizing, cytoskeletal dependent-trafficking mechanism. In this context, we propose scenarios in which biochemical and mechanical signals could drive the polarized delivery of exosomes in highly polarized cells, such as lymphocytes, neurons and epithelia.
Collapse
Affiliation(s)
- Maria Mittelbrunn
- Vascular Biology and Inflammation Department, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Miguel Vicente Manzanares
- Universidad Autonoma de Madrid, Department of Medicine / IIS-Princesa, Diego de Leon 62, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Biology and Inflammation Department, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.,Universidad Autonoma de Madrid, Department of Medicine / IIS-Princesa, Diego de Leon 62, Madrid, Spain
| |
Collapse
|
15
|
Enrich C, Rentero C, Hierro A, Grewal T. Role of cholesterol in SNARE-mediated trafficking on intracellular membranes. J Cell Sci 2015; 128:1071-81. [PMID: 25653390 DOI: 10.1242/jcs.164459] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell surface delivery of extracellular matrix (ECM) and integrins is fundamental for cell migration in wound healing and during cancer cell metastasis. This process is not only driven by several soluble NSF attachment protein (SNAP) receptor (SNARE) proteins, which are key players in vesicle transport at the cell surface and intracellular compartments, but is also tightly modulated by cholesterol. Cholesterol-sensitive SNAREs at the cell surface are relatively well characterized, but it is less well understood how altered cholesterol levels in intracellular compartments impact on SNARE localization and function. Recent insights from structural biology, protein chemistry and cell microscopy have suggested that a subset of the SNAREs engaged in exocytic and retrograde pathways dynamically 'sense' cholesterol levels in the Golgi and endosomal membranes. Hence, the transport routes that modulate cellular cholesterol distribution appear to trigger not only a change in the location and functioning of SNAREs at the cell surface but also in endomembranes. In this Commentary, we will discuss how disrupted cholesterol transport through the Golgi and endosomal compartments ultimately controls SNARE-mediated delivery of ECM and integrins to the cell surface and, consequently, cell migration.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biologia Cellular, Immunologia i Neurociències, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Facultat de Medicina, Universitat de Barcelona, 08036-Barcelona, Spain
| | - Carles Rentero
- Departament de Biologia Cellular, Immunologia i Neurociències, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Facultat de Medicina, Universitat de Barcelona, 08036-Barcelona, Spain
| | - Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Caviston JP, Cohen LA, Donaldson JG. Arf1 and Arf6 promote ventral actin structures formed by acute activation of protein kinase C and Src. Cytoskeleton (Hoboken) 2014; 71:380-94. [PMID: 24916416 DOI: 10.1002/cm.21181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 01/16/2023]
Abstract
Arf proteins regulate membrane traffic and organelle structure. Although Arf6 is known to initiate actin-based changes in cell surface architecture, Arf1 may also function at the plasma membrane. Here we show that acute activation of protein kinase C (PKC) induced by the phorbol ester PMA led to the formation of motile actin structures on the ventral surface of Beas-2b cells, a lung bronchial epithelial cell line. Ventral actin structures also formed in PMA-treated HeLa cells that had elevated levels of Arf activation. For both cell types, formation of the ventral actin structures was enhanced by expression of active forms of either Arf1 or Arf6 and by the expression of guanine nucleotide exchange factors that activate these Arfs. By contrast, formation of these structures was blocked by inhibitors of PKC and Src and required phosphatidylinositol 4, 5-bisphosphate, Rac, Arf6, and Arf1. Furthermore, expression of ASAP1, an Arf1 GTPase activating protein (GAP) was more effective at inhibiting the ventral actin structures than was ACAP1, an Arf6 GAP. This study adds to the expanding role for Arf1 in the periphery and identifies a requirement for Arf1, a "Golgi Arf," in the reorganization of the cortical actin cytoskeleton on ventral surfaces, against the substratum.
Collapse
|
17
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
18
|
Lagal V, Abrivard M, Gonzalez V, Perazzi A, Popli S, Verzeroli E, Tardieux I. Spire-1 contributes to the invadosome and its associated invasive properties. J Cell Sci 2013; 127:328-40. [PMID: 24213528 DOI: 10.1242/jcs.130161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cancer cells have an increased ability to squeeze through extracellular matrix gaps that they create by promoting proteolysis of its components. Major sites of degradation are specialized micro-domains in the plasma membrane collectively named invadosomes where the Arp2/3 complex and formin proteins cooperate to spatio-temporally control actin nucleation and the folding of a dynamic F-actin core. At invadosomes, proper coupling of exo-endocytosis allows polarized delivery of proteases that facilitate degradation of ECM and disruption of the cellular barrier. We investigated the contribution of the actin nucleator Spire-1 to invadosome structure and function, using Src-activated cells and cancer cells. We found that Spire-1 is specifically recruited at invadosomes and is part of a multi-molecular complex containing Src kinase, the formin mDia1 and actin. Spire-1 interacts with the Rab3A GTPase, a key player in the regulation of exocytosis that is present at invadosomes. Finally, over- and under-expression of Spire-1 resulted in cells with an increased or decreased potential for matrix degradation, respectively, therefore suggesting a functional interplay of Spire-1 with both actin nucleation and vesicular trafficking that might impact on cell invasive and metastatic behavior.
Collapse
Affiliation(s)
- Vanessa Lagal
- INSERM, U1016, Institut Cochin, 22 Rue Méchain, 75014 Paris, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Brisson L, Driffort V, Benoist L, Poet M, Counillon L, Antelmi E, Rubino R, Besson P, Labbal F, Chevalier S, Reshkin SJ, Gore J, Roger S. NaV1.5 Na⁺ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia. J Cell Sci 2013; 126:4835-42. [PMID: 23902689 DOI: 10.1242/jcs.123901] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The degradation of the extracellular matrix by cancer cells represents an essential step in metastatic progression and this is performed by cancer cell structures called invadopodia. NaV1.5 (also known as SCN5A) Na(+) channels are overexpressed in breast cancer tumours and are associated with metastatic occurrence. It has been previously shown that NaV1.5 activity enhances breast cancer cell invasiveness through perimembrane acidification and subsequent degradation of the extracellular matrix by cysteine cathepsins. Here, we show that NaV1.5 colocalises with Na(+)/H(+) exchanger type 1 (NHE-1) and caveolin-1 at the sites of matrix remodelling in invadopodia of MDA-MB-231 breast cancer cells. NHE-1, NaV1.5 and caveolin-1 co-immunoprecipitated, which indicates a close association between these proteins. We found that the expression of NaV1.5 was responsible for the allosteric modulation of NHE-1, rendering it more active at the intracellular pH range of 6.4-7; thus, it potentially extrudes more protons into the extracellular space. Furthermore, NaV1.5 expression increased Src kinase activity and the phosphorylation (Y421) of the actin-nucleation-promoting factor cortactin, modified F-actin polymerisation and promoted the acquisition of an invasive morphology in these cells. Taken together, our study suggests that NaV1.5 is a central regulator of invadopodia formation and activity in breast cancer cells.
Collapse
Affiliation(s)
- Lucie Brisson
- Inserm U1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vaškovičová K, Žárský V, Rösel D, Nikolič M, Buccione R, Cvrčková F, Brábek J. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol Direct 2013; 8:8. [PMID: 23557484 PMCID: PMC3663805 DOI: 10.1186/1745-6150-8-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Invasive cell growth and migration is usually considered a specifically metazoan phenomenon. However, common features and mechanisms of cytoskeletal rearrangements, membrane trafficking and signalling processes contribute to cellular invasiveness in organisms as diverse as metazoans and plants – two eukaryotic realms genealogically connected only through the last common eukaryotic ancestor (LECA). By comparing current understanding of cell invasiveness in model cell types of both metazoan and plant origin (invadopodia of transformed metazoan cells, neurites, pollen tubes and root hairs), we document that invasive cell behavior in both lineages depends on similar mechanisms. While some superficially analogous processes may have arisen independently by convergent evolution (e.g. secretion of substrate- or tissue-macerating enzymes by both animal and plant cells), at the heart of cell invasion is an evolutionarily conserved machinery of cellular polarization and oriented cell mobilization, involving the actin cytoskeleton and the secretory pathway. Its central components - small GTPases (in particular RHO, but also ARF and Rab), their specialized effectors, actin and associated proteins, the exocyst complex essential for polarized secretion, or components of the phospholipid- and redox- based signalling circuits (inositol-phospholipid kinases/PIP2, NADPH oxidases) are aparently homologous among plants and metazoans, indicating that they were present already in LECA. Reviewer: This article was reviewed by Arcady Mushegian, Valerian Dolja and Purificacion Lopez-Garcia.
Collapse
Affiliation(s)
- Katarína Vaškovičová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
21
|
Miyazawa Y, Uekita T, Ito Y, Seiki M, Yamaguchi H, Sakai R. CDCP1 regulates the function of MT1-MMP and invadopodia-mediated invasion of cancer cells. Mol Cancer Res 2013; 11:628-37. [PMID: 23439492 DOI: 10.1158/1541-7786.mcr-12-0544] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Complement C1r/C1s, Uegf, Bmp1 (CUB) domain-containing protein 1 (CDCP1) is a transmembrane protein that regulates anchorage-independent growth and cancer cell migration and invasion. Expression of CDCP1 is detected in a number of cancer cell lines and tissues and is closely correlated with poor prognosis. Invadopodia are actin-based protrusions on the surface of invasive cancer cells that promote the degradation of the extracellular matrix (ECM) via localized proteolysis, which is mainly mediated by membrane type 1 matrix metalloproteinase (MT1-MMP). MT1-MMP is accumulated at invadopodia by targeted delivery via membrane trafficking. The present study shows that CDCP1 is required for ECM degradation by invadopodia in human breast cancer and melanoma cells. CDCP1 localized to caveolin-1-containing vesicular structures and lipid rafts and was detected in close proximity to invadopodia. Further biochemical analysis revealed that substantial amounts of CDCP1 existed in the Triton X-100 insoluble lipid raft fraction. CDCP1 was coimmunoprecipitated with MT1-MMP and colocalized with MT1-MMP at the vesicular structures. The siRNA-mediated knockdown of the CDCP1 expression markedly inhibited MT1-MMP-dependent ECM degradation and Matrigel invasion and reduced the accumulation of MT1-MMP at invadopodia, as shown by immunofluorescence analysis. These results indicate that CDCP1 is an essential regulator of the trafficking and function of MT1-MMP- and invadopodia-mediated invasion of cancer cells.
Collapse
Affiliation(s)
- Yuri Miyazawa
- Division of Metastasis and Invasion Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Alikhani N, Ferguson RD, Novosyadlyy R, Gallagher EJ, Scheinman E, Yakar S, LeRoith D. Mammary tumor growth and pulmonary metastasis are enhanced in a hyperlipidemic mouse model. Oncogene 2013; 32:961-7. [PMID: 22469977 PMCID: PMC4063440 DOI: 10.1038/onc.2012.113] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/14/2012] [Accepted: 02/24/2012] [Indexed: 12/16/2022]
Abstract
Dyslipidemia has been associated with an increased risk for developing cancer. However, the implicated mechanisms are largely unknown. To explore the role of dyslipidemia in breast cancer growth and metastasis, we used the apolipoprotein E (ApoE) knockout mice (ApoE(-/-)), which exhibit marked dyslipidemia, with elevated circulating cholesterol and triglyceride levels in the setting of normal glucose homeostasis and insulin sensitivity. Non-metastatic Met-1 and metastatic Mvt-1 mammary cancer cells derived from MMTV-PyVmT/FVB-N transgenic mice and c-Myc/vegf tumor explants respectively, were injected into the mammary fat pad of ApoE(-/-) and wild-type (WT) females consuming a high-fat/high-cholesterol diet and tumor growth was evaluated. ApoE(-/-) mice exhibited increased tumor growth and displayed a greater number of spontaneous metastases to the lungs. Furthermore, intravenous injection of Mvt-1 cells resulted in a greater number of pulmonary metastases in the lungs of ApoE(-/-) mice compared with WT controls. To unravel the molecular mechanism involved in enhanced tumor growth in ApoE(-/-) mice, we studied the response of Mvt-1 cells to cholesterol in vitro. We found that cholesterol increased Akt(S473) phosphorylation in Mvt-1 cells as well as cellular proliferation, whereas cholesterol depletion in the cell membrane abrogated Akt(S473) phosphorylation induced by exogenously added cholesterol. Furthermore, in vivo administration of BKM120, a small-molecule inhibitor of phosphatidylinositol 3-kinase (PI3K), alleviated dyslipidemia-induced tumor growth and metastasis in Mvt-1 model with a concomitant decrease in PI3K/Akt signaling. Collectively, we suggest that the hypercholesterolemic milieu in the ApoE(-/-) mice is a favorable setting for mammary tumor growth and metastasis.
Collapse
Affiliation(s)
- Nyosha Alikhani
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School Medicine, New York, New York
| | - Rosalyn D Ferguson
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School Medicine, New York, New York
| | - Ruslan Novosyadlyy
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School Medicine, New York, New York
| | - Emily Jane Gallagher
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School Medicine, New York, New York
| | - Eyal Scheinman
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR), Israel
| | - Shoshana Yakar
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School Medicine, New York, New York
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School Medicine, New York, New York
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR), Israel
| |
Collapse
|
23
|
van Horssen R, Buccione R, Willemse M, Cingir S, Wieringa B, Attanasio F. Cancer cell metabolism regulates extracellular matrix degradation by invadopodia. Eur J Cell Biol 2013; 92:113-21. [PMID: 23306026 DOI: 10.1016/j.ejcb.2012.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 11/20/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022] Open
Abstract
Transformed cancer cells have an altered metabolism, characterized by a shift towards aerobic glycolysis, referred to as 'the Warburg phenotype'. A change in flux through mitochondrial OXPHOS and cytosolic pathways for ATP production and a gain of capacity for biomass production in order to sustain the needs for altered growth and morphodynamics are typically involved in this global rewiring of cancer cell metabolism. Characteristically, these changes in metabolism are accompanied by enhanced uptake of nutrients like glucose and glutamine. Here we focus on the relationship between cell metabolism and cell dynamics, in particular the formation and function of invadopodia, specialized structures for focal degradation of the extracellular matrix. Since we recently found presence of enzymes that are active in glycolysis and associated pathways in invadopodia, we hypothesize that metabolic adaptation and invadopodia formation are linked processes. We give an overview on the background for this idea and show for the first time that extracellular matrix degradation by invadopodia can be differentially manipulated, without effects on cell proliferation, by use of metabolic inhibitors or changes in nutrient composition of cell culture media. We conclude that cell metabolism and carbohydrate availability, especially pyruvate, are involved in fuelling of invadopodia formation and activity.
Collapse
Affiliation(s)
- Remco van Horssen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Pan YR, Tseng WS, Chang PW, Chen HC. Phosphorylation of moesin by c-Jun N-terminal kinase is important for podosome rosette formation in Src-transformed fibroblasts. J Cell Sci 2013; 126:5670-80. [DOI: 10.1242/jcs.134361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Podosomes are actin-based membrane protrusions that facilitate extracellular matrix degradation and invasive cell motility. Podosomes can self-organize into large rosette-like structures in Src-transformed fibroblasts, osteoclasts, and some highly invasive cancer cells. However, the mechanism of this assembly remains obscure. In this study, we show that the suppression of c-Jun N-terminal kinase (JNK) by the JNK inhibitor SP600125 or short-hairpin RNA inhibited podosome rosette formation in SrcY527F-transformed NIH3T3 fibroblasts. In addition, SrcY527F was less potent to induce podosome rosettes in JNK1-null or JNK2-null mouse embryo fibroblasts than in their wild-type counterparts. The kinase activity of JNK was essential for promoting podosome rosette formation but not for its localization to podosome rosettes. Moesin, a member of the ERM (ezrin, radixin, and moesin) protein family, was identified as a substrate of JNK. We show that the phosphorylation of moesin at Thr558 by JNK was important for podosome rosette formation in SrcY527F-transformed NIH3T3 fibroblasts. Taken together, our results unveil a novel role of JNK in podosome rosette formation by phosphorylating moesin.
Collapse
|
25
|
Li R, Ackerman WE, Mihai C, Volakis LI, Ghadiali S, Kniss DA. Myoferlin depletion in breast cancer cells promotes mesenchymal to epithelial shape change and stalls invasion. PLoS One 2012; 7:e39766. [PMID: 22761893 PMCID: PMC3384637 DOI: 10.1371/journal.pone.0039766] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/30/2012] [Indexed: 11/18/2022] Open
Abstract
Myoferlin (MYOF) is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET). These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin) and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNA(MYOF) transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF.
Collapse
Affiliation(s)
- Ruth Li
- Laboratory of Perinatal Research, Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio, United States of America
| | - William E. Ackerman
- Laboratory of Perinatal Research, Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio, United States of America
| | - Cosmin Mihai
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Leonithas I. Volakis
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Samir Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Douglas A. Kniss
- Laboratory of Perinatal Research, Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
26
|
Brisson L, Reshkin SJ, Goré J, Roger S. pH regulators in invadosomal functioning: proton delivery for matrix tasting. Eur J Cell Biol 2012; 91:847-60. [PMID: 22673002 DOI: 10.1016/j.ejcb.2012.04.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/20/2022] Open
Abstract
Invadosomes are actin-rich finger-like cellular structures sensing and interacting with the surrounding extracellular matrix (ECM) and involved in its proteolytic remodeling. Invadosomes are structures distinct from other adhesion complexes, and have been identified in normal cells that have to cross tissue barriers to fulfill their function such as leukocytes, osteoclasts and endothelial cells. They also represent features of highly aggressive cancer cells, allowing them to escape from the primary tumor, to invade surrounding tissues and to reach systemic circulation. They are localized to the ventral membrane of cells grown under 2-dimensional conditions and are supposed to be present all around cells grown in 3-dimensional matrices. Indeed invadosomes are key structures in physiological processes such as inflammation and the immune response, bone remodeling, tissue repair, but also in pathological conditions such as osteopetrosis and the development of metastases. Invadosomes are subdivided into podosomes, found in normal cells, and into invadopodia specific for cancer cells. While these two structures exhibit differences in organization, size, number and half-life, they share similarities in molecular composition, participation in cell-matrix adhesion and promoting matrix degradation. A key determinant in invadosomal function is the recruitment and release of proteases, such as matrix metalloproteinases (MMPs), serine proteases and cysteine cathepsins, together with their activation in a tightly controlled and highly acidic microenvironment. Therefore numerous pH regulators such as V-ATPases and Na(+)/H(+) exchangers, are found in invadosomes and are directly involved in their constitution as well as their functioning. This review focuses on the participation of pH regulators in invadosome function in physiological and pathological conditions, with a particular emphasis on ECM remodeling by osteoclasts during bone resorption and by cancer cells.
Collapse
Affiliation(s)
- Lucie Brisson
- Nutrition, Growth and Cancer, Université François-Rabelais de Tours, Inserm U, France
| | | | | | | |
Collapse
|
27
|
Itraconazole inhibits HMEC-1 angiogenesis. Biomed Pharmacother 2012; 66:312-7. [DOI: 10.1016/j.biopha.2011.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/21/2011] [Indexed: 12/12/2022] Open
|
28
|
Polarised apical-like intracellular sorting and trafficking regulates invadopodia formation and degradation of the extracellular matrix in cancer cells. Eur J Cell Biol 2012; 91:961-8. [PMID: 22564726 DOI: 10.1016/j.ejcb.2012.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 01/07/2023] Open
Abstract
Invadopodia are proteolytically active protrusions formed by invasive tumoral cells when grown on an extracellular matrix (ECM) substratum. A current challenge is to understand how proteolytic activity is so precisely localised at discrete sites of the plasma membrane to produce focalised ECM degradation at invadopodia. Indeed, a number of components including metalloproteases need to be directed to invadopodia to ensure proper segregation of proteolytic activities. We recently found invadopodia to feature the properties of cholesterol-rich membrane domains (a.k.a. lipid drafts) and that ECM degradation depends on the tight control of cholesterol homeostasis. Since apically directed polarised sorting and transport in epithelial cells relies on segregation of proteins into lipid rafts at the Golgi complex, we hypothesised that invadopodia-dependent ECM degradation might also rely on lipid raft-dependent polarised transport routes. To investigate this issue we undertook a three-pronged approach. First, we found that microtubule depolymerisation, which is known to disrupt polarised transport in polarised cells, strongly inhibited invadopodia formation, while not affecting overall protein transport. In the second approach we found that glycosylphosphatidylinositol-anchored green fluorescent protein (an apical model protein), but not vesicular stomatitis virus G-protein or influenza virus hemagglutinin (both model basolateral model cargoes), was transported to sites of ECM degradation. Finally, RNAi-mediated knock-down of proteins known to specifically regulate polarised apical or basolateral transport in epithelial cells, such as caveolin 1 and annexin XIIIB or clathrin, respectively, demonstrated that the selective inhibition of the apical, but not the basolateral, transport route impairs invadopodia formation and ECM degradation. Taken together, our findings suggest that invadopodia are apical-like membrane domains, where signal transduction and local membrane remodelling events might be temporally and spatially confined via selective raft-dependent apical transport routes.
Collapse
|
29
|
Wang Y, McNiven MA. Invasive matrix degradation at focal adhesions occurs via protease recruitment by a FAK-p130Cas complex. ACTA ACUST UNITED AC 2012; 196:375-85. [PMID: 22291036 PMCID: PMC3275373 DOI: 10.1083/jcb.201105153] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor cell migration and the concomitant degradation of extracellular matrix (ECM) are two essential steps in the metastatic process. It is well established that focal adhesions (FAs) play an important role in regulating migration; however, whether these structures contribute to matrix degradation is not clear. In this study, we report that multiple cancer cell lines display degradation of ECM at FA sites that requires the targeted action of MT1-MMP. Importantly, we have found that this MT1-MMP targeting is dependent on an association with a FAK-p130Cas complex situated at FAs and is regulated by Src-mediated phosphorylation of Tyr 573 at the cytoplasmic tail of MT1. Disrupting the FAK-p130Cas-MT1 complex significantly impairs FA-mediated degradation and tumor cell invasion yet does not appear to affect invadopodia formation or function. These findings demonstrate a novel function for FAs and also provide molecular insights into MT1-MMP targeting and function.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biochemistry and Molecular Biology, and the Center for Basic Research in Digestive Diseases, Mayo Clinic and Graduate School, Rochester, MN 55905, USA
| | | |
Collapse
|
30
|
Rothberg JM, Sameni M, Moin K, Sloane BF. Live-cell imaging of tumor proteolysis: impact of cellular and non-cellular microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:123-32. [PMID: 21854877 PMCID: PMC3232330 DOI: 10.1016/j.bbapap.2011.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 01/26/2023]
Abstract
Our laboratory has had a longstanding interest in how the interactions between tumors and their microenvironment affect malignant progression. Recently, we have focused on defining the proteolytic pathways that function in the transition of breast cancer from the pre-invasive lesions of ductal carcinoma in situ (DCIS) to invasive ductal carcinomas (IDCs). We use live-cell imaging to visualize, localize and quantify proteolysis as it occurs in real-time and thereby have established roles for lysosomal cysteine proteases both pericellularly and intracellularly in tumor proteolysis. To facilitate these studies, we have developed and optimized 3D organotypic co-culture models that recapitulate the in vivo interactions of mammary epithelial cells or tumor cells with stromal and inflammatory cells. Here we will discuss the background that led to our present studies as well as the techniques and models that we employ. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cells, Cultured
- Cellular Microenvironment/physiology
- Diagnostic Imaging/methods
- Female
- Humans
- Microscopy, Video
- Models, Biological
- Neoplasms/diagnosis
- Neoplasms/metabolism
- Neoplasms/pathology
- Proteolysis
- Single-Cell Analysis/methods
- Tumor Microenvironment/physiology
Collapse
Affiliation(s)
- Jennifer M Rothberg
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
31
|
Yamaguchi H, Yoshida S, Muroi E, Yoshida N, Kawamura M, Kouchi Z, Nakamura Y, Sakai R, Fukami K. Phosphoinositide 3-kinase signaling pathway mediated by p110α regulates invadopodia formation. ACTA ACUST UNITED AC 2011; 193:1275-88. [PMID: 21708979 PMCID: PMC3216328 DOI: 10.1083/jcb.201009126] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inhibition of p110α or of the downstream PI3K signaling pathway components PDK1 and Akt, as well as phosphoinositide sequestration, blocks invadopodia formation in breast cancer cells. Invadopodia are extracellular matrix–degrading protrusions formed by invasive cancer cells that are thought to function in cancer invasion. Although many invadopodia components have been identified, signaling pathways that link extracellular stimuli to invadopodia formation remain largely unknown. We investigate the role of phosphoinositide 3-kinase (PI3K) signaling during invadopodia formation. We find that in human breast cancer cells, both invadopodia formation and degradation of a gelatin matrix were blocked by treatment with PI3K inhibitors or sequestration of D-3 phosphoinositides. Functional analyses revealed that among the PI3K family proteins, the class I PI3K catalytic subunit p110α, a frequently mutated gene product in human cancers, was selectively involved in invadopodia formation. The expression of p110α with cancerous mutations promoted invadopodia-mediated invasive activity. Furthermore, knockdown or inhibition of PDK1 and Akt, downstream effectors of PI3K signaling, suppressed invadopodia formation induced by p110α mutants. These data suggest that PI3K signaling via p110α regulates invadopodia-mediated invasion of breast cancer cells.
Collapse
Affiliation(s)
- Hideki Yamaguchi
- Division of Metastasis and Invasion Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Linder S, Wiesner C, Himmel M. Degrading devices: invadosomes in proteolytic cell invasion. Annu Rev Cell Dev Biol 2011; 27:185-211. [PMID: 21801014 DOI: 10.1146/annurev-cellbio-092910-154216] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Podosomes and invadopodia, collectively known as invadosomes, are cell-matrix contacts in a variety of cell types, such as monocytic cells or cancer cells, that have to cross tissue barriers. Both structures share an actin-rich core, which distinguishes them from other matrix contacts, and are regulated by a multitude of signaling pathways including RhoGTPases, kinases, actin-associated proteins, and microtubule-dependent transport. Invadosomes recruit and secrete proteinases and are thus able to lyse extracellular matrix components. They are therefore considered to be potential key structures in proteolytic cell invasion in both physiological and pathological settings. This review provides an overview of the field, with special focus on current developments such as intracellular transport processes, ultrastructural analysis, the possible involvement of invadosomes in disease, and the tentative identification of invadosomes in 3D environments and in vivo.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| | | | | |
Collapse
|
33
|
Cornfine S, Himmel M, Kopp P, El Azzouzi K, Wiesner C, Krüger M, Rudel T, Linder S. The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes. Mol Biol Cell 2010; 22:202-15. [PMID: 21119006 PMCID: PMC3020916 DOI: 10.1091/mbc.e10-05-0394] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Podosomes are actin-based matrix contacts in a variety of cell types. This study identifies the kinesin KIF9 and reggie/flotillin proteins as novel regulators of macrophage podosomes and shows that their interaction through the unique C-terminal domain of KIF9 is critical for the matrix-degrading ability of these structures. Podosomes are actin-based matrix contacts in a variety of cell types, most notably monocytic cells, and are characterized by their ability to lyse extracellular matrix material. Besides their dependence on actin regulation, podosomes are also influenced by microtubules and microtubule-dependent transport processes. Here we describe a novel role for KIF9, a previously little-characterized member of the kinesin motor family, in the regulation of podosomes in primary human macrophages. We find that small interfering RNA (siRNA)/short-hairpin RNA–induced knockdown of KIF9 significantly affects both numbers and matrix degradation of podosomes. Overexpression and microinjection experiments reveal that the unique C-terminal region of KIF9 is crucial for these effects, presumably through binding of specific interactors. Indeed, we further identify reggie-1/flotillin-2, a signaling mediator between intracellular vesicles and the cell periphery, as an interactor of the KIF9 C-terminus. Reggie-1 dynamically colocalizes with KIF9 in living cells, and, consistent with KIF9-mediated effects, siRNA-induced knockdown of reggies/flotillins significantly impairs matrix degradation by podosomes. In sum, we identify the kinesin KIF9 and reggie/flotillin proteins as novel regulators of macrophage podosomes and show that their interaction is critical for the matrix-degrading ability of these structures.
Collapse
Affiliation(s)
- Susanne Cornfine
- Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany Institute for Cardiovascular Diseases, 80336 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Albrechtsen R, Stautz D, Sanjay A, Kveiborg M, Wewer UM. Extracellular engagement of ADAM12 induces clusters of invadopodia with localized ectodomain shedding activity. Exp Cell Res 2010; 317:195-209. [PMID: 20951132 DOI: 10.1016/j.yexcr.2010.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/27/2010] [Accepted: 10/01/2010] [Indexed: 12/23/2022]
Abstract
Invadopodia are dynamic actin structures at the cell surface that degrade extracellular matrix and act as sites of signal transduction. The biogenesis of invadopodia, including the mechanisms regulating their formation, composition, and turnover is not entirely understood. Here, we demonstrate that antibody ligation of ADAM12, a transmembrane disintegrin and metalloprotease, resulted in the rapid accumulation of invadopodia with extracellular matrix-degrading capacity in epithelial cells expressing the αvβ3 integrin and active c-Src kinase. The induction of invadopodia clusters required an intact c-Src interaction site in the ADAM12 cytoplasmic domain, but was independent of the catalytic activity of ADAM12. Caveolin-1 and transmembrane protease MMP14/MT1-MMP were both present in the ADAM12-induced clusters of invadopodia, and cholesterol depletion prevented their formation, suggesting that lipid-raft microdomains are involved in the process. Importantly, our data demonstrate that ADAM12-mediated ectodomain shedding of epidermal growth factor receptor ligands can occur within these invadopodia. Such localized growth factor signalling offers an interesting novel biological concept highly relevant to the properties of carcinoma cells, which often show upregulated ADAM12 and β3 integrin expression, together with high levels of c-Src kinase activity.
Collapse
Affiliation(s)
- Reidar Albrechtsen
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
35
|
Yamaguchi H, Yoshida S, Muroi E, Kawamura M, Kouchi Z, Nakamura Y, Sakai R, Fukami K. Phosphatidylinositol 4,5-bisphosphate and PIP5-kinase Ialpha are required for invadopodia formation in human breast cancer cells. Cancer Sci 2010; 101:1632-8. [PMID: 20426790 PMCID: PMC11158062 DOI: 10.1111/j.1349-7006.2010.01574.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Invadopodia are ventral cell protrusions formed in invasive cancer cells. Because invadopodia have extracellular matrix (ECM) degradation activity, they are thought to function in cancer invasion. In this study, we examined the roles of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] and PI(4,5)P(2)-producing enzymes in invadopodia formation in MDA-MB-231 human breast cancer cells. Immunofluorescence analysis showed that PI(4,5)P(2) accumulates at invadopodia on the ventral cell surface. Injection of an anti-PI(4,5)P(2) antibody inhibited invadopodia formation along with gelatin degradation activity. Sequestering of PI(4,5)P(2) by overexpression of the phospholipase C (PLC) delta1-pleckstrin homology (PH) domain, a specific probe for PI(4,5)P(2), also blocked invadopodia formation, while a mutated PLCdelta1-PH domain that lacks PI(4,5)P(2)-binding activity had no effect. Cellular PI(4,5)P(2) production is mainly mediated by type-I phosphatidylinositol 4-phosphate 5-kinase (PIP5KI) family proteins, which include PIP5KIalpha, Ibeta, and Igamma. Real-time quantitative PCR analysis showed that PIP5KIalpha is a dominant isoform expressed in MDA-MB-231 cells. Knockdown of PIP5KIalpha by small-interfering RNA (siRNA) inhibited invadopodia formation and gelatin degradation. Immunofluorescence analysis revealed that endogenous PIP5KIalpha protein localizes at invadopodia, which is corroborated by the observation that exogenously expressed green fluorescent protein (GFP)-fused PIP5KIalpha protein also accumulates at gelatin degradation sites. These results indicate that localized production of PI(4,5)P(2) by PIP5KIalpha is required for invadopodia formation and ECM degradation by human breast cancer cells.
Collapse
Affiliation(s)
- Hideki Yamaguchi
- Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Freeman MR, Di Vizio D, Solomon KR. The Rafts of the Medusa: cholesterol targeting in cancer therapy. Oncogene 2010; 29:3745-7. [PMID: 20440260 DOI: 10.1038/onc.2010.132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this issue of Oncogene, Mollinedo and co-workers present promising evidence that cholesterol-sensitive signaling pathways involving lipid rafts can be therapeutically targeted in multiple myeloma. Because the pathways considered in their study are used by other types of tumor cells, one implication of this report is that cholesterol-targeting approaches may be applicable to other malignancies.
Collapse
Affiliation(s)
- M R Freeman
- Urological Diseases Research Center, Children's Hospital Boston, Boston, MA 02115, USA.
| | | | | |
Collapse
|