1
|
Carrasco E, Gomez-Gutierrez P, Campos PM, Vega M, Messeguer A, Perez JJ. Discovery of novel 2,3,5-trisubstituted pyridine analogs as potent inhibitors of IL-1β via modulation of the p38 MAPK signaling pathway. Eur J Med Chem 2021; 223:113620. [PMID: 34186234 DOI: 10.1016/j.ejmech.2021.113620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Interleukin-1β is a central mediator of innate immune responses and inflammation. It plays a key role in a wide variety of pathologies, ranging from autoinflammatory diseases to metabolic syndrome and malignant tumors. It is well established that its inhibition results in a rapid and sustained reduction in disease severity, underlining the importance of having a repertoire of drugs of this class. At present, there are only three interleukin-1β blockers approved in the clinic. All of them are biologics, requiring parenteral administration and resulting in expensive treatments. In an exercise to identify small molecule allosteric inhibitors of MAP kinases, we discovered a series of compounds that block IL-1β release produced as a consequence of a stimulus involved in triggering an inflammatory response. The present study reports the hit-to-lead optimization process that permitted the identification of the compound 13b (AIK3-305) an orally available, potent and selective inhibitor of IL-1β. Furthermore, the study also reports the results of an in vivo efficacy study of 13b in a LPS endotoxic shock model in male BALB/c mice, where IL-1β inhibition is monitored in different tissues.
Collapse
Affiliation(s)
- Esther Carrasco
- Allinky Biopharma, Campus de Cantoblanco, Faraday 7, 28049, Madrid, Spain
| | - Patricia Gomez-Gutierrez
- Allinky Biopharma, Campus de Cantoblanco, Faraday 7, 28049, Madrid, Spain; Dept. of Chemical Engineering, Universitat Politecnica de Catalunya, 08028, Barcelona, Spain
| | - Pedro M Campos
- Allinky Biopharma, Campus de Cantoblanco, Faraday 7, 28049, Madrid, Spain
| | - Miguel Vega
- Allinky Biopharma, Campus de Cantoblanco, Faraday 7, 28049, Madrid, Spain
| | - Angel Messeguer
- IQAC CSIC, Institute of Advanced Chemistry of Catalonia, Dept. Biological Chemistry, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Juan J Perez
- Dept. of Chemical Engineering, Universitat Politecnica de Catalunya, 08028, Barcelona, Spain.
| |
Collapse
|
2
|
Bouti P, Webbers SDS, Fagerholm SC, Alon R, Moser M, Matlung HL, Kuijpers TW. β2 Integrin Signaling Cascade in Neutrophils: More Than a Single Function. Front Immunol 2021; 11:619925. [PMID: 33679708 PMCID: PMC7930317 DOI: 10.3389/fimmu.2020.619925] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most prevalent leukocytes in the human body. They have a pivotal role in the innate immune response against invading bacterial and fungal pathogens, while recent emerging evidence also demonstrates their role in cancer progression and anti-tumor responses. The efficient execution of many neutrophil effector responses requires the presence of β2 integrins, in particular CD11a/CD18 or CD11b/CD18 heterodimers. Although extensively studied at the molecular level, the exact signaling cascades downstream of β2 integrins still remain to be fully elucidated. In this review, we focus mainly on inside-out and outside-in signaling of these two β2 integrin members expressed on neutrophils and describe differences between various neutrophil stimuli with respect to integrin activation, integrin ligand binding, and the pertinent differences between mouse and human studies. Last, we discuss how integrin signaling studies could be used to explore the therapeutic potential of targeting β2 integrins and the intracellular signaling cascade in neutrophils in several, among other, inflammatory conditions in which neutrophil activity should be dampened to mitigate disease.
Collapse
Affiliation(s)
- Panagiota Bouti
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Steven D S Webbers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Preissner KT, Fischer S, Deindl E. Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Front Cell Dev Biol 2020; 8:619221. [PMID: 33392206 PMCID: PMC7775424 DOI: 10.3389/fcell.2020.619221] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Upon vascular injury, tissue damage, ischemia, or microbial infection, intracellular material such as nucleic acids and histones is liberated and comes into contact with the vessel wall and circulating blood cells. Such "Danger-associated molecular patterns" (DAMPs) may thus have an enduring influence on the inflammatory defense process that involves leukocyte recruitment and wound healing reactions. While different species of extracellular RNA (exRNA), including microRNAs and long non-coding RNAs, have been implicated to influence inflammatory processes at different levels, recent in vitro and in vivo work has demonstrated a major impact of ribosomal exRNA as a prominent DAMP on various steps of leukocyte recruitment within the innate immune response. This includes the induction of vascular hyper-permeability and vasogenic edema by exRNA via the activation of the "vascular endothelial growth factor" (VEGF) receptor-2 system, as well as the recruitment of leukocytes to the inflamed endothelium, the M1-type polarization of inflammatory macrophages, or the role of exRNA as a pro-thrombotic cofactor to promote thrombosis. Beyond sterile inflammation, exRNA also augments the docking of bacteria to host cells and the subsequent microbial invasion. Moreover, upon vessel occlusion and ischemia, the shear stress-induced release of exRNA initiates arteriogenesis (i.e., formation of natural vessel bypasses) in a multistep process that resembles leukocyte recruitment. Although exRNA can be counteracted for by natural circulating RNase1, under the conditions mentioned, only the administration of exogenous, thermostable, non-toxic RNase1 provides an effective and safe therapeutic regimen for treating the damaging activities of exRNA. It remains to be investigated whether exRNA may also influence viral infections (including COVID-19), e.g., by supporting the interaction of host cells with viral particles and their subsequent invasion. In fact, as a consequence of the viral infection cycle, massive amounts of exRNA are liberated, which can provoke further tissue damage and enhance virus dissemination. Whether the application of RNase1 in this scenario may help to limit the extent of viral infections like COVID-19 and impact on leukocyte recruitment and emigration steps in immune defense in order to limit the extent of associated cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Burns JA, Pittis AA, Kim E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat Ecol Evol 2018; 2:697-704. [DOI: 10.1038/s41559-018-0477-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022]
|
5
|
Role of Drebrin at the Immunological Synapse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:271-280. [PMID: 28865025 DOI: 10.1007/978-4-431-56550-5_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although drebrin was first described in neurons, it is also expressed in cells of the immune system, such as T lymphocytes and mast cells. Another member of the drebrin family of proteins, mammalian actin-binding protein 1 (mAbp-1) is more widely expressed and plays important roles in the function of macrophages, polymorphonuclear neutrophils, and B lymphocytes. We will briefly discuss on the function of mAbp-1 and drebrin in immune cells with emphasis on T cells. Specifically, drebrin enables the immune responses of CD4+ T lymphocytes. T cells are activated after the recognition of an antigen presented by antigen-presenting cells through cognate cell-cell contacts called immunological synapses (IS). In CD4+ T cells, drebrin associates with the chemokine receptor CXCR4, and both molecules redistribute to the IS displaying similar dynamics. Through its interaction with CXCR4 and the actin cytoskeleton, drebrin regulates T cell activation. CD4+ T cells are one of the main targets for the human immunodeficiency virus (HIV)-1. This virus utilizes the IS structure to be transmitted to uninfected cells, forming cell-cell contacts called virological synapses (VS). Interestingly, drebrin negatively regulates HIV-1 infection of CD4+ T lymphocytes, by regulating actin polymerization at the VS.
Collapse
|
6
|
Cofilin-1 and Other ADF/Cofilin Superfamily Members in Human Malignant Cells. Int J Mol Sci 2016; 18:ijms18010010. [PMID: 28025492 PMCID: PMC5297645 DOI: 10.3390/ijms18010010] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Identification of actin-depolymerizing factor homology (ADF-H) domains in the structures of several related proteins led first to the formation of the ADF/cofilin family, which then expanded to the ADF/cofilin superfamily. This superfamily includes the well-studied cofilin-1 (Cfl-1) and about a dozen different human proteins that interact directly or indirectly with the actin cytoskeleton, provide its remodeling, and alter cell motility. According to some data, Cfl-1 is contained in various human malignant cells (HMCs) and is involved in the formation of malignant properties, including invasiveness, metastatic potential, and resistance to chemotherapeutic drugs. The presence of other ADF/cofilin superfamily proteins in HMCs and their involvement in the regulation of cell motility were discovered with the use of various OMICS technologies. In our review, we discuss the results of the study of Cfl-1 and other ADF/cofilin superfamily proteins, which may be of interest for solving different problems of molecular oncology, as well as for the prospects of further investigations of these proteins in HMCs.
Collapse
|
7
|
Li Z, Park HR, Shi Z, Li Z, Pham CD, Du Y, Khuri FR, Zhang Y, Han Q, Fu H. Pro-oncogenic function of HIP-55/Drebrin-like (DBNL) through Ser269/Thr291-phospho-sensor motifs. Oncotarget 2015; 5:3197-209. [PMID: 24912570 PMCID: PMC4102803 DOI: 10.18632/oncotarget.1900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
HIP-55 (HPK1-interacting protein of 55 kDa, also named DBNL, SH3P7, and mAbp1) is a multidomain adaptor protein that is critical for organ development and the immune response. Here, we report the coupling of HIP-55 to cell growth control through its 14-3-3-binding phospho-Ser/Thr-sensor sites. Using affinity chromatography, we found HIP-55 formed a complex with 14-3-3 proteins, revealing a new node in phospho-Ser/Thr-mediated signaling networks. In addition, we demonstrated that HIP-55 is required for proper cell growth control. Enforced HIP-55 expression promoted proliferation, colony formation, migration, and invasion of lung cancer cells while silencing of HIP-55 reversed these effects. Importantly, HIP-55 was found to be upregulated in lung cancer cell lines and in tumor tissues of lung cancer patients. Upregulated HIP-55 was required to promote the growth of tumors in a xenograft animal model. However, tumors with S269A/T291A-mutated HIP-55, which ablates 14-3-3 binding, exhibited significantly reduced sizes, supporting a vital role of the HIP-55/14-3-3 protein interaction node in transmitting oncogenic signals. Mechanistically, HIP-55-mediated tumorigenesis activity appears to be in part mediated by antagonizing the tumor suppressor function of HPK1. Thus, the HIP-55–mediated oncogenic pathway, through S269/T291, may be exploited for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Zijian Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
HIP-55 negatively regulates myocardial contractility at the single-cell level. J Biomech 2014; 47:2715-20. [DOI: 10.1016/j.jbiomech.2014.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 11/22/2022]
|
9
|
Identification of the NAC1-regulated genes in ovarian cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:133-40. [PMID: 24200849 DOI: 10.1016/j.ajpath.2013.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 08/20/2013] [Accepted: 09/10/2013] [Indexed: 01/23/2023]
Abstract
Nucleus accumbens-associated protein 1 (NAC1), encoded by the NACC1 gene, is a transcription co-regulator that plays a multifaceted role in promoting tumorigenesis. However, the NAC1-regulated transcriptome has not been comprehensively defined. In this study, we compared the global gene expression profiles of NAC1-overexpressing SKOV3 ovarian cancer cells and NAC1-knockdown SKOV3 cells. We found that NAC1 knockdown was associated with up-regulation of apoptotic genes and down-regulation of genes involved in cell movement, proliferation, Notch signaling, and epithelial-mesenchymal transition. Among NAC1-regulated genes, FOXQ1 was further characterized because it is involved in cell motility and epithelial-mesenchymal transition. NAC1 knockdown decreased FOXQ1 expression and promoter activity. Similarly, inactivation of NAC1 by expression of a dominant-negative construct of NAC1 suppressed FOXQ1 expression. Ectopic expression of NAC1 in NACC1 null cells induced FOXQ1 expression. NAC1 knockdown resulted in decreased cell motility and invasion, whereas constitutive expression of FOXQ1 rescued motility in cells after NAC1 silencing. Moreover, in silico analysis revealed a significant co-up-regulation of NAC1 and FOXQ1 in ovarian carcinoma tissues. On the basis of transcription profiling, we report a group of NAC1-regulated genes that may participate in multiple cancer-related pathways. We further demonstrate that NAC1 is essential and sufficient for activation of FOXQ1 transcription and that the role of NAC1 in cell motility is mediated, at least in part, by FOXQ1.
Collapse
|
10
|
Loss of NAC1 expression is associated with defective bony patterning in the murine vertebral axis. PLoS One 2013; 8:e69099. [PMID: 23922682 PMCID: PMC3724875 DOI: 10.1371/journal.pone.0069099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/06/2013] [Indexed: 11/19/2022] Open
Abstract
NAC1 encoded by NACC1 is a member of the BTB/POZ family of proteins and participates in several pathobiological processes. However, its function during tissue development has not been elucidated. In this study, we compared homozygous null mutant Nacc1-/- and wild type Nacc1+/+ mice to determine the consequences of diminished NAC1 expression. The most remarkable change in Nacc1-/- mice was a vertebral patterning defect in which most knockout animals exhibited a morphological transformation of the sixth lumbar vertebra (L6) into a sacral identity; thus, the total number of pre-sacral vertebrae was decreased by one (to 25) in Nacc1-/- mice. Heterozygous Nacc1+/- mice had an increased tendency to adopt an intermediate phenotype in which L6 underwent partial sacralization. Nacc1-/- mice also exhibited non-closure of the dorsal aspects of thoracic vertebrae T10-T12. Chondrocytes from Nacc1+/+ mice expressed abundant NAC1 while Nacc1-/- chondrocytes had undetectable levels. Loss of NAC1 in Nacc1-/- mice was associated with significantly reduced chondrocyte migratory potential as well as decreased expression of matrilin-3 and matrilin-4, two cartilage-associated extracellular matrix proteins with roles in the development and homeostasis of cartilage and bone. These data suggest that NAC1 participates in the motility and differentiation of developing chondrocytes and cartilaginous tissues, and its expression is necessary to maintain normal axial patterning of murine skeleton.
Collapse
|
11
|
Hematopoietic progenitor kinase 1 (HPK1) is required for LFA-1–mediated neutrophil recruitment during the acute inflammatory response. Blood 2013; 121:4184-94. [DOI: 10.1182/blood-2012-08-451385] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Key Points
Hematopoietic progenitor kinase 1 (HPK1) regulates LFA-1 affinity and thereby controls adhesion and postadhesion functions of neutrophils. Hematopoietic progenitor kinase 1 (HPK1) is critically involved in neutrophil trafficking during acute inflammation.
Collapse
|
12
|
Futosi K, Németh T, Pick R, Vántus T, Walzog B, Mócsai A. Dasatinib inhibits proinflammatory functions of mature human neutrophils. Blood 2012; 119:4981-91. [PMID: 22411867 PMCID: PMC3367900 DOI: 10.1182/blood-2011-07-369041] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 03/02/2012] [Indexed: 12/25/2022] Open
Abstract
Dasatinib is a tyrosine kinase inhibitor used to treat imatinib-resistant chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. At present, little is known about how dasatinib influences nonmalignant cells. In the present study, we tested the effect of dasatinib on functional responses of normal mature human neutrophils. Dasatinib completely blocked integrin- and Fc-receptor-mediated neutrophil functions, with the lowest IC(50) values below 10nM under serum-free conditions. Dasatinib caused a partial inhibition of neutrophil responses triggered by G-protein-coupled receptors and had a moderate effect on neutrophil responses triggered by microbial compounds. Whereas dasatinib inhibited neutrophil chemotaxis under static conditions in 2 dimensions, it did not affect migration under flow conditions or in 3-dimensional environments. Dasatinib did not have any major effect on phagocytosis or killing of bacteria by neutrophils. Adhesion of human neutrophils in the presence of whole serum was significantly inhibited by 50-100nM dasatinib, which corresponds to the reported serum concentrations in dasatinib-treated patients. Finally, ex vivo adhesion of mouse peripheral blood neutrophils was strongly reduced after oral administration of 5 mg/kg of dasatinib. Those results suggest that dasatinib treatment may affect the proinflammatory functions of mature neutrophils and raise the possibility that dasatinib-related compounds may provide clinical benefit in neutrophil-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
13
|
van Golen RF, van Gulik TM, Heger M. The sterile immune response during hepatic ischemia/reperfusion. Cytokine Growth Factor Rev 2012; 23:69-84. [PMID: 22609105 DOI: 10.1016/j.cytogfr.2012.04.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/16/2012] [Indexed: 12/14/2022]
Abstract
Hepatic ischemia and reperfusion elicits an immune response that lacks a microbial constituent yet poses a potentially lethal threat to the host. In this sterile setting, the immune system is alarmed by endogenous danger signals that are release by stressed and dying liver cells. The detection of these immunogenic messengers by sentinel leukocyte populations constitutes the proximal trigger for a self-perpetuating cycle of inflammation, in which consecutive waves of cytokines and chemokines orchestrate the influx of various leukocyte subsets that ultimately confer tissue destruction. This review focuses on the temporal organization of sterile hepatic inflammation, using surgery-induced trauma as a template disease state.
Collapse
Affiliation(s)
- Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
14
|
Hepper I, Schymeinsky J, Weckbach LT, Jakob SM, Frommhold D, Sixt M, Laschinger M, Sperandio M, Walzog B. The Mammalian Actin-Binding Protein 1 Is Critical for Spreading and Intraluminal Crawling of Neutrophils under Flow Conditions. THE JOURNAL OF IMMUNOLOGY 2012; 188:4590-601. [DOI: 10.4049/jimmunol.1100878] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Poukkula M, Kremneva E, Serlachius M, Lappalainen P. Actin-depolymerizing factor homology domain: a conserved fold performing diverse roles in cytoskeletal dynamics. Cytoskeleton (Hoboken) 2011; 68:471-90. [PMID: 21850706 DOI: 10.1002/cm.20530] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/29/2011] [Accepted: 08/05/2011] [Indexed: 11/09/2022]
Abstract
Actin filaments form contractile and protrusive structures that play central roles in many processes such as cell migration, morphogenesis, endocytosis, and cytokinesis. During these processes, the dynamics of the actin filaments are precisely regulated by a large array of actin-binding proteins. The actin-depolymerizing factor homology (ADF-H) domain is a structurally conserved protein motif, which promotes cytoskeletal dynamics by interacting with monomeric and/or filamentous actin, and with the Arp2/3 complex. Despite their structural homology, the five classes of ADF-H domain proteins display distinct biochemical activities and cellular roles, only parts of which are currently understood. ADF/cofilin promotes disassembly of aged actin filaments, whereas twinfilin inhibits actin filament assembly via sequestering actin monomers and interacting with filament barbed ends. GMF does not interact with actin, but instead binds Arp2/3 complex and promotes dissociation of Arp2/3-mediated filament branches. Abp1 and drebrin are multidomain proteins that interact with actin filaments and regulate the activities of other proteins during various actin-dependent processes. The exact function of coactosin is currently incompletely understood. In this review article, we discuss the biochemical functions, cellular roles, and regulation of the five groups of ADF-H domain proteins.
Collapse
Affiliation(s)
- Minna Poukkula
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | |
Collapse
|