1
|
Saleh T, Himsawi N, Al Rousan A, Alhesa A, El-Sadoni M, Khawaldeh S, Shahin NA, Ghalioun AA, Shawish B, Friehat K, Alotaibi MR, Abu Al Karsaneh O, Abu-Humaidan A, Khasawneh R, Khasawneh AI, Al Shboul S. Variable Expression of Oncogene-Induced Senescence/SASP Surrogates in HPV-Associated Precancerous Cervical Tissue. Curr Issues Mol Biol 2024; 46:13696-13712. [PMID: 39727946 DOI: 10.3390/cimb46120818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Oncogene-induced senescence (OIS) is a form of cellular senescence triggered by oncogenic signaling and, potentially, by infection with oncogenic viruses. The role of senescence, along with its associated secretory phenotype, in the development of cervical cancer remains unclear. Additionally, the expression of the senescence-associated secretory phenotype (SASP) has not yet been explored in cervical premalignant lesions infected by the Human Papilloma Virus (HPV). This study aimed to investigate the expression of OIS and SASP markers in HPV-infected cervical precancerous lesions. We used a set of patient-derived precancerous (n = 32) and noncancerous (chronic cervicitis; n = 10) tissue samples to investigate the gene expression of several OIS (LMNB1, CDKN2A, CDKN2B, and CDKN1A), and SASP (IL1A, CCL2, TGFB1, CXCL8, and MMP9) biomarkers using qRT-PCR. OIS status was confirmed in precancerous lesions based on Lamin B1 downregulation by immunohistochemical staining. HPV status for all precancerous lesions was tested. Most of the noncancerous samples showed high Lamin B1 expression, however, precancerous lesions exhibited significant Lamin B1 downregulation (p < 0.001). Fifty-five percent of the precancerous samples were positive for HPV infection, with HPV-16 as the dominant genotype. Lamin B1 downregulation coincided with HPV E6 positive expression. CDKN2A and CDKN2B expression was higher in precancerous lesions compared to noncancerous tissue, while LMNB1 was downregulated. The SASP profile of premalignant lesions included elevated CXCL8 and TGFB1 and reduced IL1A, CCL2, and MMP9. this work shall provide an opportunity to further examine the role of OIS and the SASP in the process of malignant cervical transformation.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Amani Al Rousan
- King Hussein Medical Center, Royal Medical Services, Amman 11942, Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Mohammed El-Sadoni
- King Hussein Medical Center, Royal Medical Services, Amman 11942, Jordan
| | - Suzan Khawaldeh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ala' Abu Ghalioun
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Bayan Shawish
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Kholoud Friehat
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12271, Saudi Arabia
| | - Ola Abu Al Karsaneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Anas Abu-Humaidan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Rame Khasawneh
- King Hussein Medical Center, Royal Medical Services, Amman 11942, Jordan
| | - Ashraf I Khasawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| |
Collapse
|
2
|
Zhong X, Deng Y, Yang H, Du X, Liu P, Du Y. Role of autophagy in skin photoaging: A narrative review. Medicine (Baltimore) 2024; 103:e37178. [PMID: 38394552 PMCID: PMC11309671 DOI: 10.1097/md.0000000000037178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
As the largest organ of the human body, the skin serves as the primary barrier against external damage. The continuous increase in human activities and environmental pollution has resulted in the ongoing depletion of the ozone layer. Excessive exposure to ultraviolet (UV) radiation enhances the impact of external factors on the skin, leading to photoaging. Photoaging causes physical and psychological damage to the human body. The prevention and management of photoaging have attracted increased attention in recent years. Despite significant progress in understanding and mitigating UV-induced photoaging, the precise mechanisms through which autophagy contributes to the prevention of photoaging remain unclear. Given the important role of autophagy in repairing UV-induced DNA damage and scavenging oxidized lipids, autophagy is considered a novel strategy for preventing the occurrence of photoaging and other UV light-induced skin diseases. This review aims to elucidate the biochemical and clinical features of photoaging, the relationship of skin photoaging and chronological aging, the mechanisms underlying skin photoaging and autophagy, and the role of autophagy in skin photoaging.
Collapse
Affiliation(s)
- Xiaojiao Zhong
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ying Deng
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongqiu Yang
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoshuang Du
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ping Liu
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yu Du
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Dong Q, Han D, Li B, Yang Y, Ren L, Xiao T, Zhang J, Li Z, Yang H, Liu H. Bionic lipoprotein loaded with chloroquine-mediated blocking immune escape improves antitumor immunotherapy. Int J Biol Macromol 2023; 240:124342. [PMID: 37030459 DOI: 10.1016/j.ijbiomac.2023.124342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
Tumor immunotherapy hold great promise for eradicating tumors. However, immune escape and the immunosuppressive microenvironment of tumor usually limit the efficiency of tumor immunotherapy. Therefore, simultaneously blocking immune escape and improving immunosuppressive microenvironment are the current problems to be solved urgently. Among them, CD47 on cancer cells membrane could bind to signal regulatory protein α (SIRPα) on macrophages membrane and sent out "don't eat me" signal, which was an important pathway of immune escape. The large number of M2-type macrophages in tumor microenvironment was a significant factor contributing to the immunosuppressive microenvironment. Here, we present a drug loading system for enhancing cancer immunotherapy, comprising CD47 antibody (aCD47) and chloroquine (CQ) with Bionic lipoprotein (BLP) carrier (BLP-CQ-aCD47). On the one hand, as drug delivery carrier, BLP could allow CQ to be preferentially taken up by M2-type macrophages, thereby efficiently polarized M2-type tumor-promoting cells into M1-type anti-tumor cells. On the other hand, blocking CD47 from binding to SIRPα could block the "don't eat me" signal, and improve the phagocytosis of macrophages to tumor cells. Taken together, BLP-CQ-aCD47 could block immune escape, improve immunosuppressive microenvironment of tumor, and induce a strong immune response without substantial systemic toxicity. Therefore, it provides a new idea for tumor immunotherapy.
Collapse
Affiliation(s)
- Qing Dong
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Dandan Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Baoku Li
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China.
| | - Yang Yang
- Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Lili Ren
- Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Tingshan Xiao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Zhenhua Li
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangdong 510515, China
| | - Hua Yang
- Affiliated Hospital of Hebei University, Baoding 071000, China.
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Liang JR, Corn JE. A CRISPR view on autophagy. Trends Cell Biol 2022; 32:1008-1022. [PMID: 35581059 DOI: 10.1016/j.tcb.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/21/2023]
Abstract
Autophagy is a fundamental pathway for the degradation of cytoplasmic content in response to pleiotropic extracellular and intracellular stimuli. Recent advances in the autophagy field have demonstrated that different organelles can also be specifically targeted for autophagy with broad implications on cellular and organismal health. This opens new dimensions in the autophagy field and more unanswered questions on the rationale and underlying mechanisms to degrade different organelles. Functional genomics via clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-based screening has gained popularity in the autophagy field to understand the common and unique factors that are implicated in the signaling, recognition, and execution of different cargo-specific autophagies. We focus on recent applications of CRISPR-based screens in the autophagy field, their discoveries, and the future directions of autophagy screens.
Collapse
Affiliation(s)
- Jin Rui Liang
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093, Zürich, Switzerland; Medical Research Council, Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| | - Jacob E Corn
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
5
|
Pathological Nuclear Hallmarks in Dentate Granule Cells of Alzheimer’s Patients: A Biphasic Regulation of Neurogenesis. Int J Mol Sci 2022; 23:ijms232112873. [PMID: 36361662 PMCID: PMC9654738 DOI: 10.3390/ijms232112873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
The dentate gyrus (DG) of the human hippocampus is a complex and dynamic structure harboring mature and immature granular neurons in diverse proliferative states. While most mammals show persistent neurogenesis through adulthood, human neurogenesis is still under debate. We found nuclear alterations in granular cells in autopsied human brains, detected by immunohistochemistry. These alterations differ from those reported in pyramidal neurons of the hippocampal circuit. Aging and early AD chromatin were clearly differentiated by the increased epigenetic markers H3K9me3 (heterochromatin suppressive mark) and H3K4me3 (transcriptional euchromatin mark). At early AD stages, lamin B2 was redistributed to the nucleoplasm, indicating cell-cycle reactivation, probably induced by hippocampal nuclear pathology. At intermediate and late AD stages, higher lamin B2 immunopositivity in the perinucleus suggests fewer immature neurons, less neurogenesis, and fewer adaptation resources to environmental factors. In addition, senile samples showed increased nuclear Tau interacting with aged chromatin, likely favoring DNA repair and maintaining genomic stability. However, at late AD stages, the progressive disappearance of phosphorylated Tau forms in the nucleus, increased chromatin disorganization, and increased nuclear autophagy support a model of biphasic neurogenesis in AD. Therefore, designing therapies to alleviate the neuronal nuclear pathology might be the only pathway to a true rejuvenation of brain circuits.
Collapse
|
6
|
Qi X, Zheng S, Ma M, Lian N, Wang H, Chen L, Song A, Lu C, Zheng S, Jin H. Curcumol Suppresses CCF-Mediated Hepatocyte Senescence Through Blocking LC3B–Lamin B1 Interaction in Alcoholic Fatty Liver Disease. Front Pharmacol 2022; 13:912825. [PMID: 35837283 PMCID: PMC9273900 DOI: 10.3389/fphar.2022.912825] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 01/10/2023] Open
Abstract
Recent studies indicated that hepatocyte senescence plays an important role in the development of alcoholic fatty liver disease (AFLD), suggesting that inhibition of hepatocyte senescence might be a potential strategy for AFLD treatment. The present study investigated the effect of curcumol, a component from the root of Rhizoma Curcumae, on hepatocyte senescence in AFLD and the underlying mechanisms implicated. The results showed that curcumol was able to reduce lipid deposition and injury in livers of ethanol liquid diet-fed mice and in ethanol-treated LO2 cells. Both in vivo and in vitro studies indicated that supplementation with curcumol effectively alleviated ethanol-induced cellular senescence as manifested by a decrease in senescence-associated β-galactosidase (SA-β-gal) activity, a downregulated expression of senescence-related markers p16 and p21, and dysfunction of the telomere and telomerase system. Consistently, treatment with curcumol led to a marked suppression of ethanol-induced formation of cytoplasmic chromatin fragments (CCF) and subsequent activation of cGAS-STING, resulting in a significant reduction in senescence-associated secretory phenotype (SASP)-related inflammatory factors’ secretion. Further studies indicated that curcumol’s inhibition of CCF formation might be derived from blocking the interaction of LC3B with lamin B1 and maintaining nuclear membrane integrity. Taken together, these results indicated that curcumol was capable of ameliorating AFLD through inhibition of hepatocyte senescence, which might be attributed to its blocking of LC3B and lamin B1 interaction and subsequent inactivation of the CCF-cGAS-STING pathway. These findings suggest a promising use of curcumol in the treatment of AFLD.
Collapse
Affiliation(s)
- Xiaoyu Qi
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Shuguo Zheng
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Mingyue Ma
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Naqi Lian
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongting Wang
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Lerong Chen
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Anping Song
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Shizhong Zheng, , ; Huanhuan Jin,
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
- *Correspondence: Shizhong Zheng, , ; Huanhuan Jin,
| |
Collapse
|
7
|
Ieni A, Pizzimenti C, Giuffrè G, Caruso RA, Tuccari G. Autophagy-related prognostic signature in HER2 positive gastric carcinomas. Curr Mol Med 2021; 22:809-818. [PMID: 34814818 DOI: 10.2174/1566524021666211123093532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/10/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The immunohistochemical analysis of autophagy-related proteins (ATGs) has been recently applied in human pathology to study differentiation and cancer progression. The aim of the present study is to analyze a cohort of gastric carcinomas (GC) by five ATG antisera (Beclin-1, LC3A/B, p62, ULK-1 and AMBRA-1), also evaluating their possible relationship with clinicopathological parameters, HER2 status and final outcome of patients. METHODS A cohort of 123 GCs has been studied by ATG antisera utilizing Masuda's criteria that define positive cases in which at least two out of five protein expressions were documented. RESULTS The immunohistochemical signature for autophagy (A-IHC) was 49.59% as a whole. The percentage of A-IHC ranged from 31% for poorly cohesive carcinomas to 56% for adenocarcinomas. The performance of each ATG immunomarker documented high values for sensitivity, specificity and efficiency for LC3A/B, Beclin-1 and p62. In univariate analysis of GC, grade, stage, Ki67 expression, HER2 status as well as A-IHC appeared as emerged as relevant parameters with a high p-value (p < 0.001). Finally, in multivariate analysis, HER2 status, stage and A-IHC emerged as independent prognostic variables. In the comparison of survival curves, GC cases immunoreactive for A-IHC exhibited a shorter survival with a worse outcome. CONCLUSIONS We have hypothesized that A-IHC could represent an additional morphological tool to provide prognostic elements in order to identify patients affected by aggressive with shorter survival and worse outcome.
Collapse
Affiliation(s)
- Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Pathology, University of Messina, Messina. Italy
| | - Cristina Pizzimenti
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Pathology, University of Messina, Messina. Italy
| | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Pathology, University of Messina, Messina. Italy
| | - Rosario Alberto Caruso
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Pathology, University of Messina, Messina. Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Pathology, University of Messina, Messina. Italy
| |
Collapse
|
8
|
Tanshinone I regulates autophagic signaling via the activation of AMP-activated protein kinase in cancer cells. Anticancer Drugs 2021; 31:601-608. [PMID: 32011366 DOI: 10.1097/cad.0000000000000908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tanshinone I, one of the components of Salvia miltiorrhiza Bunge, exhibits anti-tumor ability and induces autophagy. But the mechanisms are not fully understood. This study aims to investigate whether AMP-activated protein kinase dependent pathway is involved in the autophagic signaling regulation and its relationship with tumor suppression. Breast cancer cells (MDA-MB-231, MCF-7) and hepatocellular carcinoma cells (HepG2) were treated with Tanshinone I or vehicle. Acridine orange dyeing and transmission electron microscopy were employed to evaluate autophagic cells. MTT and Cell Counting Kit-8 assays were used to detect the effect of Tanshinone I combined with autophagy inhibitors on cell proliferation. Western blot was used to detect the expression levels of Beclin1 and LC3-I/II, as well as the phosphorylation of AMPKα and ULK1. Our results showed that Tanshinone I suppressed proliferation of HepG2, MDA-MB-231 and MCF-7 cancer cell lines. LC3-II and P62 were induced by Tanshinone I in all three cancer cell lines. But autophagic flux analysis showed that Tanshinone I treatment induced autophagy only in MDA-MB-231, which was also proved by transmission electron microscopy. Tanshinone I upregulated the phosphorylation of AMPKα and its downstream ULK1. AMP-activated protein kinase inhibitor compound C attenuated Beclin 1 and LC3-II expression induced by Tanshinone I in HepG2. In MDA-MB-231, compound C surprisingly induced LC3-II upregulation which is independent of AMPKα activation. Under this circumstance, treatment of Tanshinone I combined with compound C significantly inhibited MDA-MB-231 proliferation, compared with Tanshinone I treatment alone. This study demonstrates that Tanshinone I could induce cancer cell death and regulate autophagy signaling in breast cancer and hepatic carcinoma cells. Activation of AMPKα was found to be involved in autophagic signaling regulation by Tanshinone I.
Collapse
|
9
|
Tan ML, Parkinson EK, Yap LF, Paterson IC. Autophagy is deregulated in cancer-associated fibroblasts from oral cancer and is stimulated during the induction of fibroblast senescence by TGF-β1. Sci Rep 2021; 11:584. [PMID: 33436723 PMCID: PMC7804411 DOI: 10.1038/s41598-020-79789-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Many of the characteristics ascribed to cancer-associated fibroblasts (CAFs) are shared by activated, autophagic and senescent fibroblasts. Whilst most oral squamous cell carcinomas (OSCCs) are genetically unstable (GU-OSCC), genetically stable variants (GS-OSCC) have been described and, notably, CAF activation (myofibroblast differentiation) and senescence are characteristics particularly associated with GU-OSCCs. However, it is not known whether autophagy is disrupted in these cells or whether autophagy regulates the development of the myofibroblast and senescent phenotypes. In this study, we show that senescent CAFs from GU-OSCCs contained more autophagosomes than normal human oral fibroblasts (NHOFs) and CAFs from GS-OSCCs possibly due to autophagic impairment. Further, we show that deregulation of autophagy in normal fibroblasts, either by inhibition with autophagy inhibitor, SAR405, or activation with TGF-β1, induced fibroblast activation and senescence: In response to TGF-β1, autophagy was induced prior to the development of the activated and senescent phenotypes. Lastly, we show that both SAR405- and TGF-β1-treated NHOFs enhance OSCC cell migration but only TGF-β1-treated cells increase OSCC invasion through Matrigel, indicating that TGF-β1 has additional effects that are independent of fibroblast activation/senescence. These results suggest a functional role for autophagy in the development of myofibroblast and CAF phenotypes.
Collapse
Affiliation(s)
- May Leng Tan
- Department of Oral and Craniofacial Sciences, Level 9, Postgraduate and Research Tower, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - E Kenneth Parkinson
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences, Level 9, Postgraduate and Research Tower, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences, Level 9, Postgraduate and Research Tower, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Spermidine, a caloric restriction mimetic, provides neuroprotection against normal and D-galactose-induced oxidative stress and apoptosis through activation of autophagy in male rats during aging. Biogerontology 2020; 22:35-47. [PMID: 32979155 DOI: 10.1007/s10522-020-09900-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Spermidine (SPD) is a natural polyamine present in all living organisms and is involved in the maintenance of cellular homeostasis by inducing autophagy in different model organisms. Its role as a caloric restriction mimetic (CRM) is still being investigated. We have undertaken this study to investigate whether SPD, acting as a CRM, can confer neuroprotection in D-galactose induced accelerated senescence model rat and naturally aged rats through modulation of autophagy and inflammation. Young male rats (4 months), D-gal induced (500 mg/kg b.w., subcutaneously) aging and naturally aged (22 months) male rats were supplemented with SPD (10 mg/kg b.w., orally) for 6 weeks. Standard protocols were employed to measure prooxidants, antioxidants, apoptotic cell death and electron transport chain complexes in brain tissues. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy and inflammatory marker genes. Our data demonstrate that SPD significantly (p ≤ 0.05) decreased the level of pro-oxidants and increased the level of antioxidants. SPD supplementation also augmented the activities of electron transport chain complexes in aged brain mitochondria thus proving its antioxidant potential at the level of mitochondria. RT-PCR data revealed that SPD up-regulated the expression of autophagy genes (ATG-3, Beclin-1, ULK-1 and LC3B) and down-regulated the expression of the inflammatory gene (IL-6) in aging brain. Our results provide first line of evidence that SPD provides neuroprotection against aging-induced oxidative stress by regulating autophagy, antioxidants level and also reduces neuroinflammation. These results suggest that SPD may be beneficial for neuroprotection during aging and age-related disorders.
Collapse
|
11
|
Loos B, Klionsky DJ, Du Toit A, Hofmeyr JHS. On the relevance of precision autophagy flux control in vivo - Points of departure for clinical translation. Autophagy 2020; 16:750-762. [PMID: 31679454 PMCID: PMC7138200 DOI: 10.1080/15548627.2019.1687211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 10/11/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Macroautophagy (which we will call autophagy hereafter) is a critical intracellular bulk degradation system that is active at basal rates in eukaryotic cells. This process is embedded in the homeostasis of nutrient availability and cellular metabolic demands, degrading primarily long-lived proteins and specific organelles.. Autophagy is perturbed in many pathologies, and its manipulation to enhance or inhibit this pathway therapeutically has received considerable attention. Although better probes are being developed for a more precise readout of autophagic activity in vitro and increasingly in vivo, many questions remain. These center in particular around the accurate measurement of autophagic flux and its translation from the in vitro to the in vivo environment as well as its clinical application. In this review, we highlight key aspects that appear to contribute to stumbling blocks on the road toward clinical translation and discuss points of departure for reaching some of the desired goals. We discuss techniques that are well aligned with achieving desirable spatiotemporal resolution to gather data on autophagic flux in a multi-scale fashion, to better apply the existing tools that are based on single-cell analysis and to use them in the living organism. We assess how current techniques may be used for the establishment of autophagic flux standards or reference points and consider strategies for a conceptual approach on titrating autophagy inducers based on their effect on autophagic flux . Finally, we discuss potential solutions for inherent controls for autophagy analysis, so as to better discern systemic and tissue-specific autophagic flux in future clinical applications.Abbreviations: GFP: Green fluorescent protein; J: Flux; MAP1LC3/LC3: Microtubule-associated protein 1 light chain 3; nA: Number of autophagosomes; TEM: Transmission electron microscopy; τ: Transition time.
Collapse
Affiliation(s)
- Ben Loos
- Department of Physiological Sciences, Faculty of Natural Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Andre Du Toit
- Department of Biochemistry, Faculty of Natural Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Jan-Hendrik S. Hofmeyr
- Department of Biochemistry, Faculty of Natural Sciences, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
12
|
Papandreou ME, Tavernarakis N. Nucleophagy mediators and mechanisms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:1-14. [PMID: 32620238 DOI: 10.1016/bs.pmbts.2020.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear recycling is essential for cell and organismal homeostasis. Nuclear architecture perturbations, such as nuclear loss or nuclear enlargement, have been observed in several pathological conditions. Apart from proteasomal components which reside in the nucleus, specific autophagic proteins also shuttle between the nucleus and the cytoplasm. Until recently, only the microautophagic degradation of nuclear components had been described. Recent studies, dissecting nuclear material recycling in organisms ranging from yeast to mammals, provide insight relevant to other forms of nucleophagy and the mediators involved. Nucleophagy has also been implicated in pathology. Lamins are degraded in cancer through direct interaction with LC3 in the nucleus. Similarly, in neurodegeneration, Golgi-associated nucleophagy is exacerbated. The physiological role of nucleophagy and its contribution to other pathologies remain to be elucidated. Here we discus recent findings that shed light into the molecular mechanisms and pathways that mediate the autophagic recycling of nuclear material.
Collapse
Affiliation(s)
- Margarita-Elena Papandreou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece.
| |
Collapse
|
13
|
Lee JS, Jang EH, Woo HA, Lee K. Regulation of Autophagy Is a Novel Tumorigenesis-Related Activity of Multifunctional Translationally Controlled Tumor Protein. Cells 2020; 9:cells9010257. [PMID: 31968668 PMCID: PMC7017196 DOI: 10.3390/cells9010257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is highly conserved in eukaryotic organisms and plays multiple roles regulating cellular growth and homeostasis. Because of its anti-apoptotic activity and its role in the regulation of cancer metastasis, TCTP has become a promising target for cancer therapy. Moreover, growing evidence points to its clinical role in cancer prognosis. How TCTP regulates cellular growth in cancer has been widely studied, but how it regulates cellular homeostasis has received relatively little attention. This review discusses how TCTP is related to cancer and its potential as a target in cancer therapeutics, including its novel role in the regulation of autophagy. Regulation of autophagy is essential for cell recycling and scavenging cellular materials to sustain cell survival under the metabolic stress that cancer cells undergo during their aggressive proliferation.
Collapse
|
14
|
Datan E, Salman S. Autophagic cell death in viral infection: Do TAM receptors play a role? TAM RECEPTORS IN HEALTH AND DISEASE 2020; 357:123-168. [DOI: 10.1016/bs.ircmb.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
15
|
Autophagy in the Immunosuppressive Perivascular Microenvironment of Glioblastoma. Cancers (Basel) 2019; 12:cancers12010102. [PMID: 31906065 PMCID: PMC7016956 DOI: 10.3390/cancers12010102] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GB) has been shown to up-regulate autophagy with anti- or pro-oncogenic effects. Recently, our group has shown how GB cells aberrantly up-regulate chaperone-mediated autophagy (CMA) in pericytes of peritumoral areas to modulate their immune function through cell-cell interaction and in the tumor’s own benefit. Thus, to understand GB progression, the effect that GB cells could have on autophagy of immune cells that surround the tumor needs to be deeply explored. In this review, we summarize all the latest evidence of several molecular and cellular immunosuppressive mechanisms in the perivascular tumor microenvironment. This immunosuppression has been reported to facilitate GB progression and may be differently modulated by several types of autophagy as a critical point to be considered for therapeutic interventions.
Collapse
|
16
|
Ho CJ, Gorski SM. Molecular Mechanisms Underlying Autophagy-Mediated Treatment Resistance in Cancer. Cancers (Basel) 2019; 11:E1775. [PMID: 31717997 PMCID: PMC6896088 DOI: 10.3390/cancers11111775] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Despite advances in diagnostic tools and therapeutic options, treatment resistance remains a challenge for many cancer patients. Recent studies have found evidence that autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation and recycling, contributes to treatment resistance in different cancer types. A role for autophagy in resistance to chemotherapies and targeted therapies has been described based largely on associations with various signaling pathways, including MAPK and PI3K/AKT signaling. However, our current understanding of the molecular mechanisms underlying the role of autophagy in facilitating treatment resistance remains limited. Here we provide a comprehensive summary of the evidence linking autophagy to major signaling pathways in the context of treatment resistance and tumor progression, and then highlight recently emerged molecular mechanisms underlying autophagy and the p62/KEAP1/NRF2 and FOXO3A/PUMA axes in chemoresistance.
Collapse
Affiliation(s)
- Cally J. Ho
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
17
|
Chen J, Huang X, Tao C, Xiao T, Li X, Zeng Q, Ma M, Wu Z. Artemether Attenuates the Progression of Non-small Cell Lung Cancer by Inducing Apoptosis, Cell Cycle Arrest and Promoting Cellular Senescence. Biol Pharm Bull 2019; 42:1720-1725. [DOI: 10.1248/bpb.b19-00391] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jian Chen
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital
- Shenzhen Institute of Geriatrics
| | - Xiaofei Huang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine
| | - Cheng Tao
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital
- Shenzhen Institute of Geriatrics
- Dongguan Institute of Jinan University
| | - Ting Xiao
- Shunde Hospital of Guangzhou University of Chinese Medicine
| | | | - Qiang Zeng
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital
- Shenzhen Institute of Geriatrics
| | - Min Ma
- College of Traditional Chinese Medicine, Jinan University
- The First Affiliated Hospital of Jinan University
| | - Zhengzhi Wu
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital
- Shenzhen Institute of Geriatrics
- The Eighth Affiliated Hospital of Sun Yat-sen University
| |
Collapse
|
18
|
Zhao Z, Dong Q, Liu X, Wei L, Liu L, Li Y, Wang X. Dynamic transcriptome profiling in DNA damage-induced cellular senescence and transient cell-cycle arrest. Genomics 2019; 112:1309-1317. [PMID: 31376528 DOI: 10.1016/j.ygeno.2019.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/14/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Cellular senescence is an irreversible cell cycle arrest process associated with aging and senescence-related diseases. DNA damage is an extensive feature of cellular senescence and aging. Different levels of DNA damage could lead to cellular senescence or transient cell-cycle arrest, but the genetic regulatory mechanisms determining cell fate are still not clear. In this work, high-resolution time course analysis of gene expression in DNA damage-induced cellular senescence and transient cell-cycle arrest was used to explore the transcriptomic differences between different cell fates after DNA damage response and to investigate the key regulatory factors affecting senescent cell fates. Pathways such as the cell cycle, DNA repair and cholesterol metabolism showed characteristic differential response. A number of key transcription factors were predicted to regulating cell cycle and DNA repair. Our study provides genome-wide insights into the molecular-level mechanisms of senescent cell fate decisions after DNA damage response.
Collapse
Affiliation(s)
- Zhen Zhao
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Qiongye Dong
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xuehui Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lei Wei
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Liyang Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yanda Li
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Stress responses in stromal cells and tumor homeostasis. Pharmacol Ther 2019; 200:55-68. [PMID: 30998941 DOI: 10.1016/j.pharmthera.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
In most (if not all) solid tumors, malignant cells are outnumbered by their non-malignant counterparts, including immune, endothelial and stromal cells. However, while the mechanisms whereby cancer cells adapt to microenvironmental perturbations have been studied in great detail, relatively little is known on stress responses in non-malignant compartments of the tumor microenvironment. Here, we discuss the mechanisms whereby cancer-associated fibroblasts and other cellular components of the tumor stroma react to stress in the context of an intimate crosstalk with malignant, endothelial and immune cells, and how such crosstalk influences disease progression and response to treatment.
Collapse
|
20
|
Synaptotagmin-7, a binding protein of P53, inhibits the senescence and promotes the tumorigenicity of lung cancer cells. Biosci Rep 2019; 39:BSR20181298. [PMID: 30647108 PMCID: PMC6367206 DOI: 10.1042/bsr20181298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/28/2018] [Accepted: 01/13/2019] [Indexed: 01/10/2023] Open
Abstract
Lung cancer has been one of the most common malignancies in the world. Cell senescence has been recognized as the avenue to inhibit tumor progression. However, the mechanisms remain poorly understood. In the present study, we have shown that synaptotagmin-7 (SYT7) expression was up-regulated in lung cancer. SYT7 also promoted the growth and colony formation of lung cancer cells and inhibited their senescence. In a molecular mechanism study, SYT7 was shown to interact with P53 and to potentiate the interaction between P53 and MDM2. Taken together, the present study demonstrates the oncogenic roles of SYT7 in lung cancer, and suggests that SYT7 may be a good therapeutic target for lung cancer treatment.
Collapse
|
21
|
Nucleophagy: from homeostasis to disease. Cell Death Differ 2019; 26:630-639. [PMID: 30647432 PMCID: PMC6460388 DOI: 10.1038/s41418-018-0266-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 11/08/2022] Open
Abstract
Nuclear abnormalities are prominent in degenerative disease and progeria syndromes. Selective autophagy of organelles is instrumental in maintaining cell homeostasis and prevention of premature ageing. Although the nucleus is the control centre of the cell by safeguarding our genetic material and controlling gene expression, little is known in relation to nuclear autophagy. Here we present recent discoveries in nuclear recycling, namely nucleophagy in physiology in yeast and nucleophagic events that occur in pathological conditions in mammals. The selective nature of degrading nuclear envelope components, DNA, RNA and nucleoli is highlighted. Potential effects of perturbed nucleophagy in senescence and longevity are examined. Moreover, the open questions that remain to be explored are discussed concerning the conditions, receptors and substrates in homeostatic nucleophagy.
Collapse
|
22
|
Application of ex-vivo spheroid model system for the analysis of senescence and senolytic phenotypes in uterine leiomyoma. J Transl Med 2018; 98:1575-1587. [PMID: 30206313 PMCID: PMC6265265 DOI: 10.1038/s41374-018-0117-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/03/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
Cellular senecence is an important biologic endpoint. Naturally occuring (aging) senescence is common in uterine leiomyoma (ULM). AKT is one of major pathways in promoting ULM growth and survival. Inactivation of AKT by MK2206 in ULM resulted in stress-induced senescence in vitro. Study of the senescent phenotypes and molecular changes in ULM may greatly facilitate the understanding of the tumor biology and potential clinical therapy for this common disease associated with high morbidity. To study senescence in a model system that closely resembles primary ULM in vivo, we applied an ex vivo model of three-dimensional (3D) spheroid culture system which maintained the molecular and cellular characteristics of primary ULM and matched myometrium as seen in vivo. Gene expression profiling done on ULM induced to undergo replication (passaging) or stress-induced (MK2206) senescence revealed that ROS and hypoxic-related genes were upregulated in the two types of senescences. Overexpression of two selected genes, WIPI1 and SLITKR4, induced cellular senescence in ULM spheroids. Additionally, administration of ABT263 (a BH3 mimetic) effectively reduced the senescent cells induced in ULM spheroids. This study identified novel genes associated with senescence in ULM and demonstrated a BH3 mimetic to act as a senolytic to remove senescent cells.
Collapse
|
23
|
Rapamycin inhibits proliferation and induces autophagy in human neuroblastoma cells. Biosci Rep 2018; 38:BSR20181822. [PMID: 30393233 PMCID: PMC6265625 DOI: 10.1042/bsr20181822] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022] Open
Abstract
Objective To investigate the effect of Rapamycin on proliferation and autophagy in human neuroblastoma (NB) cell lines and to elucidate the possible mechanism. Methods NB cells were treated with different concentrations of Rapamycin. Cell counting kit-8 (CCK-8) was used to measure proliferation, and flow cytometry (FCM) was used to analyze the cell cycle. EM was used to observe cell morphological changes. Western blotting (WB) was performed to detect the expression of Beclin-1, LC3-I/II, P62, mammalian target of Rapamycin (mTOR), and p-mTOR. Results Rapamycin inhibited the spread of NB cells in a dose- and time-dependent manner and arrested the cell cycle at the G0/G1 phase. EM showed autophagosomes in NB cells treated with Rapamycin. The WB results showed that the expression levels of Beclin-1 and LC3-II/LC3-I were significantly elevated in NB cells treated with Rapamycin, while the expression levels of P62, mTOR, and p-mTOR proteins were significantly reduced compared with the control cells (P<0.05). Conclusion Rapamycin inhibits cell proliferation and induces autophagy in human NB cell lines. The mechanism may be related to suppression of the mTOR signaling pathway.
Collapse
|
24
|
Wang Y, Li N, Jiang W, Deng W, Ye R, Xu C, Qiao Y, Sharma A, Zhang M, Hung MC, Lin SH. Mutant LKB1 Confers Enhanced Radiosensitization in Combination with Trametinib in KRAS-Mutant Non-Small Cell Lung Cancer. Clin Cancer Res 2018; 24:5744-5756. [PMID: 30068711 DOI: 10.1158/1078-0432.ccr-18-1489] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 11/16/2022]
Abstract
Purpose: The MEK inhibitor trametinib radiosensitizes KRAS-mutant non-small cell lung cancer (NSCLC) and is being tested clinically with chemoradiation. However, variability in response to trametinib suggests that additional pathways are involved. The mechanism of resistance to trametinib radiosensitization is still unknown.Experimental Design: We used a panel of KRAS-mutant NSCLC cells and tested the radiosensitization effects of trametinib by clonogenic survival assay. Then, we investigated the mechanisms underlying the resistance to the combination therapy through several knockout and overexpression systems. Finally, we validated our findings in syngeneic mouse models in a treatment setting that mimicked the standard of care in the clinic.Results: Radiosensitization by trametinib was effective only in KRAS-LKB1-mutated cells with wild-type (WT) p53, and we found that restoring LKB1 expression in those cells blocked that sensitization. Trametinib and radiotherapy both induced senescence in a p53-dependent manner, but in WT LKB1 cells, the combination also activated the AMPK-autophagy pathway to rescue damaged cells from senescence. LKB1-knockout or autophagy inhibition in WT LKB1 cells potentiated trametinib radiosensitization. In syngeneic animal models of Kras-mutant lung tumors, Lkb1-knockout tumors were resistant to trametinib and chemoradiation given separately, but the combination greatly controlled tumor growth and prolonged survival.Conclusions: The LKB1 mutation in KRAS-mutant NSCLC conferred enhanced radiosensitization in combination with trametinib. The WT LKB1 could activate autophagy through AMPK pathway to induce resistance to the combination of trametinib and radiation. The KRAS-LKB1 mutation could potentially be a biomarker to select patients for trametinib and radiotherapy combination therapy. Clin Cancer Res; 24(22); 5744-56. ©2018 AACR.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Nan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rui Ye
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Cai Xu
- Department of Radiation Oncology, Tianjin Medical University Cancer Hospital, Tianjin, China
| | - Yawei Qiao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amrish Sharma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ming Zhang
- Department of Radiation Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
25
|
Sutton MN, Yang H, Huang GY, Fu C, Pontikos M, Wang Y, Mao W, Pang L, Yang M, Liu J, Parker-Thornburg J, Lu Z, Bast RC. RAS-related GTPases DIRAS1 and DIRAS2 induce autophagic cancer cell death and are required for autophagy in murine ovarian cancer cells. Autophagy 2018; 14:637-653. [PMID: 29368982 DOI: 10.1080/15548627.2018.1427022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Among the 3 GTPases in the DIRAS family, DIRAS3/ARHI is the best characterized. DIRAS3 is an imprinted tumor suppressor gene that encodes a 26-kDa GTPase that shares 60% homology to RAS and RAP. DIRAS3 is downregulated in many tumor types, including ovarian cancer, where re-expression inhibits cancer cell growth, reduces motility, promotes tumor dormancy and induces macroautophagy/autophagy. Previously, we demonstrated that DIRAS3 is required for autophagy in human cells. Diras3 has been lost from the mouse genome during evolutionary re-arrangement, but murine cells can still undergo autophagy. We have tested whether DIRAS1 and DIRAS2, which are homologs found in both human and murine cells, could serve as surrogates to DIRAS3 in the murine genome affecting autophagy and cancer cell growth. Similar to DIRAS3, these 2 GTPases share 40-50% homology to RAS and RAP, but differ from DIRAS3 primarily in the lengths of their N-terminal extensions. We found that DIRAS1 and DIRAS2 are downregulated in ovarian cancer and are associated with decreased disease-free and overall survival. Re-expression of these genes suppressed growth of human and murine ovarian cancer cells by inducing autophagy-mediated cell death. Mechanistically, DIRAS1 and DIRAS2 induce and regulate autophagy by inhibition of the AKT1-MTOR and RAS-MAPK signaling pathways and modulating nuclear localization of the autophagy-related transcription factors FOXO3/FOXO3A and TFEB. Taken together, these data suggest that DIRAS1 and DIRAS2 likely serve as surrogates in the murine genome for DIRAS3, and may function as a backup system to fine-tune autophagy in humans.
Collapse
Affiliation(s)
- Margie N Sutton
- a Department of Experimental Therapeutics , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Hailing Yang
- a Department of Experimental Therapeutics , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Gilbert Y Huang
- a Department of Experimental Therapeutics , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Caroline Fu
- a Department of Experimental Therapeutics , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Michael Pontikos
- a Department of Experimental Therapeutics , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Yan Wang
- a Department of Experimental Therapeutics , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Weiqun Mao
- a Department of Experimental Therapeutics , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Lan Pang
- a Department of Experimental Therapeutics , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Maojie Yang
- a Department of Experimental Therapeutics , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Jinsong Liu
- b Department of Pathology , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Jan Parker-Thornburg
- c Department of Genetics , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Zhen Lu
- a Department of Experimental Therapeutics , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Robert C Bast
- a Department of Experimental Therapeutics , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
26
|
Kochetkova EY, Blinova GI, Bystrova OA, Martynova MG, Pospelov VA, Pospelova TV. Targeted elimination of senescent Ras-transformed cells by suppression of MEK/ERK pathway. Aging (Albany NY) 2018; 9:2352-2375. [PMID: 29140794 PMCID: PMC5723691 DOI: 10.18632/aging.101325] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022]
Abstract
The Ras-Raf-MEK-ERK pathway plays a central role in tumorigenesis and is a target for anticancer therapy. The successful strategy based on the activation of cell death in Ras-expressing cells is associated with the suppression of kinases involved in Ras pathway. However, activation of cytoprotective autophagy overcomes antiproliferative effect of the inhibitors and develops drug resistance. We studied whether cellular senescence induced by HDAC inhibitor sodium butyrate in E1a+cHa-Ras-transformed rat embryo fibroblasts (ERas) and A549 human Ki-Ras mutated lung adenocarcinoma cells would enhance the tumor suppressor effect of MEK/ERK inhibition. Treatment of control ERas cells with PD0325901 for 24 h results in mitochondria damage and apoptotic death of a part of cellular population. However, the activation of AMPK-dependent autophagy overcomes pro-apoptotic effects of MEK/ERK inhibitor and results in restoration of the mitochondria and rescue of viability. Senescent ERas cells do not develop cytoprotective autophagy upon inhibition of MEK/ERK pathway due to spatial dissociation of lysosomes and autophagosomes in the senescent cells. Senescent cells are unable to form the autophagolysosomes and to remove the damaged mitochondria resulting in apoptotic death. Our data show that suppression of MEK/ERK pathway in senescent cells provides a new strategy for elimination of Ras-expressing cells.
Collapse
Affiliation(s)
- Elena Y Kochetkova
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Galina I Blinova
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Olga A Bystrova
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Marina G Martynova
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Valery A Pospelov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | | |
Collapse
|
27
|
Gulumian M, Andraos C. In Search of a Converging Cellular Mechanism in Nanotoxicology and Nanomedicine in the Treatment of Cancer. Toxicol Pathol 2017; 46:4-13. [PMID: 29034767 DOI: 10.1177/0192623317735776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple applications of nanomaterials have raised concern with regard to their toxicity. With increasing research into nanomaterial safety, mechanisms involved in the toxic effects of nanomaterials have begun to emerge. The importance of nanomaterial-induced lysosomal membrane permeabilization through overloading or direct damage of the lysosomal compartment, resulting in the blockade of autophagosome-lysosome fusion and autophagy dysfunction, as well as inflammasome activation were cited as emerging mechanisms of nanomaterial toxicity. It has recently been proposed that these very mechanisms leading to nanomaterial toxicity may be utilized in nanotherapeutics. This review discusses these nanomaterial-induced mechanisms in detail and how it has been exploited in cancer research. This review also addresses certain considerations that need to be kept in mind when using nanomaterials in therapeutics.
Collapse
Affiliation(s)
- Mary Gulumian
- 1 National Institute for Occupational Health (NIOH), Johannesburg, South Africa.,2 Haematology and Molecular Medicine Department, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Charlene Andraos
- 1 National Institute for Occupational Health (NIOH), Johannesburg, South Africa
| |
Collapse
|
28
|
De Pascalis C, Etienne-Manneville S. Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell 2017; 28:1833-1846. [PMID: 28684609 PMCID: PMC5541834 DOI: 10.1091/mbc.e17-03-0134] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
Chemical and physical properties of the environment control cell proliferation, differentiation, or apoptosis in the long term. However, to be able to move and migrate through a complex three-dimensional environment, cells must quickly adapt in the short term to the physical properties of their surroundings. Interactions with the extracellular matrix (ECM) occur through focal adhesions or hemidesmosomes via the engagement of integrins with fibrillar ECM proteins. Cells also interact with their neighbors, and this involves various types of intercellular adhesive structures such as tight junctions, cadherin-based adherens junctions, and desmosomes. Mechanobiology studies have shown that cell-ECM and cell-cell adhesions participate in mechanosensing to transduce mechanical cues into biochemical signals and conversely are responsible for the transmission of intracellular forces to the extracellular environment. As they migrate, cells use these adhesive structures to probe their surroundings, adapt their mechanical properties, and exert the appropriate forces required for their movements. The focus of this review is to give an overview of recent developments showing the bidirectional relationship between the physical properties of the environment and the cell mechanical responses during single and collective cell migration.
Collapse
Affiliation(s)
- Chiara De Pascalis
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur Paris, CNRS UMR3691, 75724 Paris Cedex 15, France
- UPMC Université Paris 06, IFD, Sorbonne Universités, 75252 Paris Cedex 05, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur Paris, CNRS UMR3691, 75724 Paris Cedex 15, France
| |
Collapse
|
29
|
Targeting autophagy in cancer stem cells as an anticancer therapy. Cancer Lett 2017; 393:33-39. [DOI: 10.1016/j.canlet.2017.02.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022]
|
30
|
Papoudou-Bai A, Hatzimichael E, Barbouti A, Kanavaros P. Expression patterns of the activator protein-1 (AP-1) family members in lymphoid neoplasms. Clin Exp Med 2016; 17:291-304. [PMID: 27600282 DOI: 10.1007/s10238-016-0436-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022]
Abstract
The activator protein-1 (AP-1) is a dimeric transcription factor composed of proteins belonging to the Jun (c-Jun, JunB and JunD), Fos (c-Fos, FosB, Fra1 and Fra2) and activating transcription factor protein families. AP-1 is involved in various cellular events including differentiation, proliferation, survival and apoptosis. Deregulated expression of AP-1 transcription factors is implicated in the pathogenesis of various lymphomas such as classical Hodgkin lymphomas, anaplastic large cell lymphomas, diffuse large B cell lymphomas and adult T cell leukemia/lymphoma. The main purpose of this review is the analysis of the expression patterns of AP-1 transcription factors in order to gain insight into the histophysiology of lymphoid tissues and the pathology of lymphoid malignancies.
Collapse
Affiliation(s)
| | | | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
31
|
Gade P, Kimball AS, DiNardo AC, Gangwal P, Ross DD, Boswell HS, Keay SK, Kalvakolanu DV. Death-associated Protein Kinase-1 Expression and Autophagy in Chronic Lymphocytic Leukemia Are Dependent on Activating Transcription Factor-6 and CCAAT/Enhancer-binding Protein-β. J Biol Chem 2016; 291:22030-22042. [PMID: 27590344 DOI: 10.1074/jbc.m116.725796] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 01/08/2023] Open
Abstract
Expression of DAPK1, a critical regulator of autophagy and apoptosis, is lost in a wide variety of tumors, although the mechanisms are unclear. A transcription factor complex consisting of ATF6 (an endoplasmic reticulum-resident factor) and C/EBP-β is required for the IFN-γ-induced expression of DAPK1 IFN-γ-induced proteolytic processing of ATF6 and phosphorylation of C/EBP-β are obligatory for the formation of this transcriptional complex. We report that defects in this pathway fail to control growth of chronic lymphocytic leukemia (CLL). Consistent with these observations, IFN-γ and chemotherapeutics failed to activate autophagy in CLL patient samples lacking ATF6 and/or C/EBP-β. Together, these results identify a molecular basis for the loss of DAPK1 expression in CLL.
Collapse
Affiliation(s)
- Padmaja Gade
- From the Departments of Microbiology and Immunology and
| | | | | | | | - Douglas D Ross
- Medicine and the Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, the Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and
| | - H Scott Boswell
- the Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana 46202
| | - Susan K Keay
- Medicine and the Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and
| | | |
Collapse
|
32
|
IRE-1α regulates expression of ubiquitin specific peptidases during hypoxic response in U87 glioma cells. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2016. [DOI: 10.1515/ersc-2016-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractIRE-1α (inositol requiring enzyme-1α), the most evolutionarily conserved of the endoplasmic reticulum stress signaling pathways, is highly implicated in sustaining the proliferation of glioma cells and subsequent tumor growth, which is decreased by the inhibition of IRE-1α. To explore the IRE-1α mediated regulation of ubiquitin system in glioma cells, the expression of a subset of ubiquitin specific peptidases (USP) and of ubiquitin activating enzyme E1-like protein/autophagy related 7 (GSA7/ATG7) genes was studied, during hypoxic stress in wild type and U87 glioma cells with inhibited IRE-1α. Hypoxic treatment of wild type glioma cells leads to the up-regulation of USP25 and the concomitant downregulation of USP1, USP10, USP14, and GSA7 genes. USP4 and USP22 genes expression did not significantly change with hypoxic treatment. Inhibition of IRE-1α activity led to up-regulation of USP1, USP4, USP10, USP22, and USP25, while USP14 and GSA7 genes were down-regulated. Therefore, IRE-1α activity modifies substrate-targeting specificity to proteasome during hypoxic stress, which in turn can affect cell survival. Inhibition of IRE-1α correlates directly with deregulation of ubiquitin specific peptidases and GSA7 in a fashion that ultimately slows tumor growth.
Collapse
|
33
|
Edeler D, Kaluđerović MR, Dojčinović B, Schmidt H, Kaluđerović GN. SBA-15 mesoporous silica particles loaded with cisplatin induce senescence in B16F10 cells. RSC Adv 2016. [DOI: 10.1039/c6ra22596a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nanoparticles obtained by loading of cisplatin into mesoporous silica SBA-15 (SBA-15|CP) change the phenotype of surviving B16F10 melanoma cells from malignant to senescent.
Collapse
Affiliation(s)
- David Edeler
- Department of Bioorganic Chemistry
- Leibniz Institute of Plant Biochemistry
- D 06120 Halle (Saale)
- Germany
- Institute of Chemistry
| | - Milena R. Kaluđerović
- Department of Oral
- Maxillary, Facial and Reconstructive Plastic Surgery
- University Hospital of Leipzig
- 04103 Leipzig
- Germany
| | - Biljana Dojčinović
- Department of Chemistry
- Institute of Chemistry
- Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
| | - Harry Schmidt
- Institute of Chemistry
- Martin Luther University Halle-Wittenberg
- D-06120 Halle
- Germany
| | - Goran N. Kaluđerović
- Department of Bioorganic Chemistry
- Leibniz Institute of Plant Biochemistry
- D 06120 Halle (Saale)
- Germany
| |
Collapse
|
34
|
Minchenko OH. GLUCOSE DEPRIVATION AFFECTS THE EXPRESSION OF LONP1 AND CATHEPSINS IN IRE1 KNOCKDOWN U87 GLIOMA CELLS. BIOTECHNOLOGIA ACTA 2016. [DOI: 10.15407/biotech9.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|