1
|
Cereser B. Breast cancer blocked by multiple natural lines of defence. Nature 2024; 633:42-43. [PMID: 39232146 DOI: 10.1038/d41586-024-02658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
|
2
|
Ciwinska M, Messal HA, Hristova HR, Lutz C, Bornes L, Chalkiadakis T, Harkes R, Langedijk NSM, Hutten SJ, Menezes RX, Jonkers J, Prekovic S, Simons BD, Scheele CLGJ, van Rheenen J. Mechanisms that clear mutations drive field cancerization in mammary tissue. Nature 2024; 633:198-206. [PMID: 39232148 PMCID: PMC11374684 DOI: 10.1038/s41586-024-07882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
Oncogenic mutations are abundant in the tissues of healthy individuals, but rarely form tumours1-3. Yet, the underlying protection mechanisms are largely unknown. To resolve these mechanisms in mouse mammary tissue, we use lineage tracing to map the fate of wild-type and Brca1-/-;Trp53-/- cells, and find that both follow a similar pattern of loss and spread within ducts. Clonal analysis reveals that ducts consist of small repetitive units of self-renewing cells that give rise to short-lived descendants. This offers a first layer of protection as any descendants, including oncogenic mutant cells, are constantly lost, thereby limiting the spread of mutations to a single stem cell-descendant unit. Local tissue remodelling during consecutive oestrous cycles leads to the cooperative and stochastic loss and replacement of self-renewing cells. This process provides a second layer of protection, leading to the elimination of most mutant clones while enabling the minority that by chance survive to expand beyond the stem cell-descendant unit. This leads to fields of mutant cells spanning large parts of the epithelial network, predisposing it for transformation. Eventually, clone expansion becomes restrained by the geometry of the ducts, providing a third layer of protection. Together, these mechanisms act to eliminate most cells that acquire somatic mutations at the expense of driving the accelerated expansion of a minority of cells, which can colonize large areas, leading to field cancerization.
Collapse
Affiliation(s)
- Marta Ciwinska
- VIB-KULeuven Centre for Cancer Biology, Department of Oncology, Leuven, Belgium
| | - Hendrik A Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hristina R Hristova
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laura Bornes
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Rolf Harkes
- Bioimaging Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nathalia S M Langedijk
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefan J Hutten
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Renée X Menezes
- Biostatistics Centre and Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefan Prekovic
- Centre for Molecular Medicine, UMC Utrecht, Utrecht, the Netherlands
| | - Benjamin D Simons
- Gurdon Institute, University of Cambridge, Cambridge, UK.
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK.
| | | | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Chalmers SB, van der Wal T, Fre S, Jonkers J. Fourteenth Annual ENBDC Workshop: Methods in Mammary Gland Biology and Breast Cancer. J Mammary Gland Biol Neoplasia 2023; 28:22. [PMID: 37801168 PMCID: PMC10558360 DOI: 10.1007/s10911-023-09549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
The fourteenth annual workshop of the European Network for Breast Development and Cancer (ENBDC) on Methods in Mammary Gland Biology and Breast Cancer was held on April 26th - 29th in Weggis, Switzerland. For the first time, early career researchers organised and took part in an additional ECR workshop on the 26th of April, which was received with great enthusiasm. The topics of the main workshop included mammary branching and morphogenesis, novel experimental systems (model organisms), systemic influences on tumour progression and the tumour microenvironment. Novel and recent findings were shared across excellent oral and poster presentations.
Collapse
Affiliation(s)
| | - Tanne van der Wal
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Silvia Fre
- Department of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, Paris, France
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Han Y, Villarreal-Ponce A, Gutierrez G, Nguyen Q, Sun P, Wu T, Sui B, Berx G, Brabletz T, Kessenbrock K, Zeng YA, Watanabe K, Dai X. Coordinate control of basal epithelial cell fate and stem cell maintenance by core EMT transcription factor Zeb1. Cell Rep 2022; 38:110240. [PMID: 35021086 PMCID: PMC9894649 DOI: 10.1016/j.celrep.2021.110240] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/30/2021] [Accepted: 12/16/2021] [Indexed: 02/04/2023] Open
Abstract
Maintenance of undifferentiated, long-lived, and often quiescent stem cells in the basal compartment is important for homeostasis and regeneration of multiple epithelial tissues, but the molecular mechanisms that coordinately control basal cell fate and stem cell quiescence are elusive. Here, we report an epithelium-intrinsic requirement for Zeb1, a core transcriptional inducer of epithelial-to-mesenchymal transition, for mammary epithelial ductal side branching and for basal cell regenerative capacity. Our findings uncover an evolutionarily conserved role of Zeb1 in promoting basal cell fate over luminal differentiation. We show that Zeb1 loss results in increased basal cell proliferation at the expense of quiescence and self-renewal. Moreover, Zeb1 cooperates with YAP to activate Axin2 expression, and inhibition of Wnt signaling partially restores stem cell function to Zeb1-deficient basal cells. Thus, Zeb1 is a transcriptional regulator that maintains both basal cell fate and stem cell quiescence, and it functions in part through suppressing Wnt signaling.
Collapse
Affiliation(s)
- Yingying Han
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,These authors contributed equally
| | - Alvaro Villarreal-Ponce
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,These authors contributed equally
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Quy Nguyen
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Ting Wu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Benjamin Sui
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Geert Berx
- Molecular and Cellular Oncology Lab, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium,Cancer Research Institute Ghent, Ghent, Belgium
| | - Thomas Brabletz
- Department of Experimental Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine I, University, Erlangen-Nuernberg Glueckstr. 6, 91054 Erlangen, Germany
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Yi Arial Zeng
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Kazuhide Watanabe
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,Lead contact,Correspondence:
| |
Collapse
|
5
|
Abstract
Somatic stem cells are distinguished by their capacity to regenerate themselves and also to produce daughter cells that will differentiate. Self-renewal is achieved through the process of asymmetric cell division which helps to sustain tissue morphogenesis as well as maintain homeostasis. Asymmetric cell division results in the development of two daughter cells with different fates after a single mitosis. Only one daughter cell maintains "stemness" while the other differentiates and achieves a non-stem cell fate. Stem cells also have the capacity to undergo symmetric division of cells that results in the development of two daughter cells which are identical. Symmetric division results in the expansion of the stem cell population. Imbalances and deregulations in these processes can result in diseases such as cancer. Adult mammary stem cells (MaSCs) are a group of cells that play a critical role in the expansion of the mammary gland during puberty and any subsequent pregnancies. Furthermore, given the relatively long lifespans and their capability to undergo self-renewal, adult stem cells have been suggested as ideal candidates for transformation events that lead to the development of cancer. With the possibility that MaSCs can act as the source cells for distinct breast cancer types; understanding their regulation is an important field of research. In this review, we discuss asymmetric cell division in breast/mammary stem cells and implications on further research. We focus on the background history of asymmetric cell division, asymmetric cell division monitoring techniques, identified molecular mechanisms of asymmetric stem cell division, and the role asymmetric cell division may play in breast cancer.
Collapse
Affiliation(s)
| | - Brian W Booth
- Department of Bioengineering, Head-Cellular Engineering Laboratory, 401-1 Rhodes Engineering Research Center, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
6
|
Geddes DT, Gridneva Z, Perrella SL, Mitoulas LR, Kent JC, Stinson LF, Lai CT, Sakalidis V, Twigger AJ, Hartmann PE. 25 Years of Research in Human Lactation: From Discovery to Translation. Nutrients 2021; 13:3071. [PMID: 34578947 PMCID: PMC8465002 DOI: 10.3390/nu13093071] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Researchers have recently called for human lactation research to be conceptualized as a biological framework where maternal and infant factors impacting human milk, in terms of composition, volume and energy content are studied along with relationships to infant growth, development and health. This approach allows for the development of evidence-based interventions that are more likely to support breastfeeding and lactation in pursuit of global breastfeeding goals. Here we summarize the seminal findings of our research programme using a biological systems approach traversing breast anatomy, milk secretion, physiology of milk removal with respect to breastfeeding and expression, milk composition and infant intake, and infant gastric emptying, culminating in the exploration of relationships with infant growth, development of body composition, and health. This approach has allowed the translation of the findings with respect to education, and clinical practice. It also sets a foundation for improved study design for future investigations in human lactation.
Collapse
Affiliation(s)
- Donna Tracy Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Sharon Lisa Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Leon Robert Mitoulas
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
- Medela, AG, Lättichstrasse 4b, 6340 Baar, Switzerland
| | - Jacqueline Coral Kent
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Lisa Faye Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Vanessa Sakalidis
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | | | - Peter Edwin Hartmann
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| |
Collapse
|