1
|
Li W, Zhong Q, Deng N, Wang H, Ouyang J, Guan Z, Zhou X, Li K, Sun X, Wang Y. Identification of a novel prognostic model for gastric cancer utilizing glutamine-related genes. Heliyon 2024; 10:e37985. [PMID: 39386842 PMCID: PMC11462029 DOI: 10.1016/j.heliyon.2024.e37985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Background Glutamine metabolism presents a promising avenue for cancer prevention and treatment, but the underlying mechanisms in gastric cancer (GC) progression remain elusive. Methods The TCGA-STAD and GEO GSE62254 datasets, containing gene expression, clinical information, and survival outcomes of GC, were meticulously examined. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were employed to excavate a key module (MEturquoise), which was used to intersect with glutamine metabolism-related genes (GMRGs) and differentially expressed genes (DEGs) to identify differentially expressed GMRGs (DE-GMRGs). LASSO and Cox Univariate analyses were implemented to determine risk model genes. Correlation of the risk model with clinical parameters, pathways, and tumor immune microenvironments, was analyzed, and its prognostic independence was validated by Cox analyses. Finally, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to validate the expression levels of MYB, LRFN4, LMNB2, and SLC1A5 in GC and para-carcinoma tissue. Results The excavation of 4521 DEGs led to the discovery of the key MEturquoise module, which exhibited robust correlations with GC traits. The intersection analysis identified 42 DE-GMRGs, among which six genes showed consistency. Further LASSO analysis established MYB, LRFN4, LMNB2, and SLC1A5 as pivotal risk model genes. The risk model demonstrated associations with oncogenic and metabolism-related pathways, inversely correlating with responses to immune checkpoint blockade therapies. This risk model, together with "age", was validated to be an independent prognostic factor for GC. RT-qPCR result indicated that MYB, LRFN4, LMNB2, and SLC1A5 expressions were remarkably up-regulated in GC tissues comparison with para-carcinoma tissue. Conclusion The present study has generated a novel risk module containing four DE-GMRGs for predicting the prognosis and the response to immune checkpoint blockade treatments for GC. This risk model provides new insights into the involvement of glutamine metabolism in GC, warranting further investigation.
Collapse
Affiliation(s)
- Weidong Li
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Qixing Zhong
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Naisheng Deng
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Haitao Wang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Jun Ouyang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Zhifen Guan
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Xinhao Zhou
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Kai Li
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Xueying Sun
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, 1142, New Zealand
| | - Yao Wang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, 528400, Guangdong, China
| |
Collapse
|
2
|
Shah SB, Li Y, Li S, Hu Q, Wu T, Shi Y, Nguyen T, Ive I, Shi L, Wang H, Wu X. 53BP1 deficiency leads to hyperrecombination using break-induced replication (BIR). Nat Commun 2024; 15:8648. [PMID: 39368985 PMCID: PMC11455893 DOI: 10.1038/s41467-024-52916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024] Open
Abstract
Break-induced replication (BIR) is mutagenic, and thus its use requires tight regulation, yet the underlying mechanisms remain elusive. Here we uncover an important role of 53BP1 in suppressing BIR after end resection at double strand breaks (DSBs), distinct from its end protection activity, providing insight into the mechanisms governing BIR regulation and DSB repair pathway selection. We demonstrate that loss of 53BP1 induces BIR-like hyperrecombination, in a manner dependent on Polα-primase-mediated end fill-in DNA synthesis on single-stranded DNA (ssDNA) overhangs at DSBs, leading to PCNA ubiquitination and PIF1 recruitment to activate BIR. On broken replication forks, where BIR is required for repairing single-ended DSBs (seDSBs), SMARCAD1 displaces 53BP1 to facilitate the localization of ubiquitinated PCNA and PIF1 to DSBs for BIR activation. Hyper BIR associated with 53BP1 deficiency manifests template switching and large deletions, underscoring another aspect of 53BP1 in suppressing genome instability. The synthetic lethal interaction between the 53BP1 and BIR pathways provides opportunities for targeted cancer treatment.
Collapse
Affiliation(s)
- Sameer Bikram Shah
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Youhang Li
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- College of Life Science, Capital Normal University, Beijing, 100037, China
| | - Shibo Li
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Qing Hu
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tong Wu
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yanmeng Shi
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tran Nguyen
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Isaac Ive
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Linda Shi
- The Institute of Engineering in Medicine, University of California, San Diego, California, 92093, USA
| | - Hailong Wang
- College of Life Science, Capital Normal University, Beijing, 100037, China
| | - Xiaohua Wu
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Lee RS, Twarowski JM, Malkova A. Stressed? Break-induced replication comes to the rescue! DNA Repair (Amst) 2024; 142:103759. [PMID: 39241677 DOI: 10.1016/j.dnarep.2024.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Break-induced replication (BIR) is a homologous recombination (HR) pathway that repairs one-ended DNA double-strand breaks (DSBs), which can result from replication fork collapse, telomere erosion, and other events. Eukaryotic BIR has been mainly investigated in yeast, where it is initiated by invasion of the broken DNA end into a homologous sequence, followed by extensive replication synthesis proceeding to the chromosome end. Multiple recent studies have described BIR in mammalian cells, the properties of which show many similarities to yeast BIR. While HR is considered as "error-free" mechanism, BIR is highly mutagenic and frequently leads to chromosomal rearrangements-genetic instabilities known to promote human disease. In addition, it is now recognized that BIR is highly stimulated by replication stress (RS), including RS constantly present in cancer cells, implicating BIR as a contributor to cancer genesis and progression. Here, we discuss the past and current findings related to the mechanism of BIR, the association of BIR with replication stress, and the destabilizing effects of BIR on the eukaryotic genome. Finally, we consider the potential for exploiting the BIR machinery to develop anti-cancer therapeutics.
Collapse
Affiliation(s)
- Rosemary S Lee
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | | | - Anna Malkova
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
4
|
Shah SB, Li Y, Li S, Hu Q, Wu T, Shi Y, Nguyen T, Ive I, Shi L, Wang H, Wu X. 53BP1 deficiency leads to hyperrecombination using break-induced replication (BIR). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612483. [PMID: 39314326 PMCID: PMC11419065 DOI: 10.1101/2024.09.11.612483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Break-induced replication (BIR) is mutagenic, and thus its use requires tight regulation, yet the underlying mechanisms remain elusive. Here we uncover an important role of 53BP1 in suppressing BIR after end resection at double strand breaks (DSBs), distinct from its end protection activity, providing insight into the mechanisms governing BIR regulation and DSB repair pathway selection. We demonstrate that loss of 53BP1 induces BIR-like hyperrecombination, in a manner dependent on Polα-primase-mediated end fill-in DNA synthesis on single-stranded DNA (ssDNA) overhangs at DSBs, leading to PCNA ubiquitination and PIF1 recruitment to activate BIR. On broken replication forks, where BIR is required for repairing single-ended DSBs (seDSBs), SMARCAD1 displaces 53BP1 to facilitate the localization of ubiquitinated PCNA and PIF1 to DSBs for BIR activation. Hyper BIR associated with 53BP1 deficiency manifests template switching and large deletions, underscoring another aspect of 53BP1 in suppressing genome instability. The synthetic lethal interaction between the 53BP1 and BIR pathways provides opportunities for targeted cancer treatment.
Collapse
Affiliation(s)
- Sameer Bikram Shah
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Youhang Li
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- College of Life Science, Capital Normal University, Beijing 100037, China
| | - Shibo Li
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Qing Hu
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tong Wu
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yanmeng Shi
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tran Nguyen
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Isaac Ive
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linda Shi
- The Institute of Engineering in Medicine, University of California, San Diego, California 92093, USA
| | - Hailong Wang
- College of Life Science, Capital Normal University, Beijing 100037, China
| | - Xiaohua Wu
- Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Dixit S, Nagraj T, Bhattacharya D, Saxena S, Sahoo S, Chittela RK, Somyajit K, Nagaraju G. RTEL1 helicase counteracts RAD51-mediated homologous recombination and fork reversal to safeguard replicating genomes. Cell Rep 2024; 43:114594. [PMID: 39116203 DOI: 10.1016/j.celrep.2024.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/23/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Homologous recombination (HR) plays an essential role in the repair of DNA double-strand breaks (DSBs), replication stress responses, and genome maintenance. However, unregulated HR during replication can impair genome duplication and compromise genome stability. The mechanisms underlying HR regulation during DNA replication are obscure. Here, we find that RTEL1 helicase, RAD51, and RAD51 paralogs are enriched at stalled replication sites. The absence of RTEL1 leads to an increase in the RAD51-mediated HR and fork reversal during replication and affects genome-wide replication, which can be rescued by co-depleting RAD51 and RAD51 paralogs. Interestingly, co-depletion of fork remodelers such as SMARCAL1/ZRANB3/HLTF/FBH1 and expression of HR-defective RAD51 mutants also rescues replication defects in RTEL1-deficient cells. The anti-recombinase function of RTEL1 during replication depends on its interaction with PCNA and helicase activity. Together, our data identify the role of RTEL1 helicase in restricting RAD51-mediated fork reversal and HR activity to facilitate error-free genome duplication.
Collapse
Affiliation(s)
- Suruchi Dixit
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Tarun Nagraj
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | | | - Sneha Saxena
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Satyaranjan Sahoo
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Rajani Kant Chittela
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Kumar Somyajit
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India; Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.
| | - Ganesh Nagaraju
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
6
|
van den Berg J, van Batenburg V, Geisenberger C, Tjeerdsma RB, de Jaime-Soguero A, Acebrón SP, van Vugt MATM, van Oudenaarden A. Quantifying DNA replication speeds in single cells by scEdU-seq. Nat Methods 2024; 21:1175-1184. [PMID: 38886577 PMCID: PMC11239516 DOI: 10.1038/s41592-024-02308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
In a human cell, thousands of replication forks simultaneously coordinate duplication of the entire genome. The rate at which this process occurs might depend on the epigenetic state of the genome and vary between, or even within, cell types. To accurately measure DNA replication speeds, we developed single-cell 5-ethynyl-2'-deoxyuridine sequencing to detect nascent replicated DNA. We observed that the DNA replication speed is not constant but increases during S phase of the cell cycle. Using genetic and pharmacological perturbations we were able to alter this acceleration of replication and conclude that DNA damage inflicted by the process of transcription limits the speed of replication during early S phase. In late S phase, during which less-transcribed regions replicate, replication accelerates and approaches its maximum speed.
Collapse
Affiliation(s)
- Jeroen van den Berg
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Vincent van Batenburg
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christoph Geisenberger
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
- Pathologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
| | - Rinskje B Tjeerdsma
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander van Oudenaarden
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Daida K, Yoshino H, Malik L, Baker B, Ishiguro M, Genner R, Paquette K, Li Y, Nishioka K, Masuzugawa S, Hirano M, Takahashi K, Kolmogolv M, Billingsley KJ, Funayama M, Blauwendraat C, Hattori N. The Utility of Long-Read Sequencing in Diagnosing Genetic Autosomal Recessive Parkinson's Disease: a genetic screening study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308784. [PMID: 39108517 PMCID: PMC11302705 DOI: 10.1101/2024.06.14.24308784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Background Mutations within the genes PRKN and PINK1 are the leading cause of early onset autosomal recessive Parkinson's disease (PD). However, the genetic cause of most early-onset PD (EOPD) cases still remains unresolved. Long-read sequencing has successfully identified many pathogenic structural variants that cause disease, but this technology has not been widely applied to PD. We recently identified the genetic cause of EOPD in a pair of monozygotic twins by uncovering a complex structural variant that spans over 7 Mb, utilizing Oxford Nanopore Technologies (ONT) long-read sequencing. In this study, we aimed to expand on this and assess whether a second variant could be detected with ONT long-read sequencing in other unresolved EOPD cases reported to carry one heterozygous variant in PRKN or PINK1. Methods ONT long-read sequencing was performed on patients with one reported PRKN/PINK1 pathogenic variant. EOPD patients with an age at onset younger than 50 were included in this study. As a positive control, we also included EOPD patients who had already been identified to carry two known PRKN pathogenic variants. Initial genetic testing was performed using either short-read targeted panel sequencing for single nucleotide variants and multiplex ligation-dependent probe amplification (MLPA) for copy number variants. Results 48 patients were included in this study (PRKN "one-variant" n = 24, PINK1 "one-variant" n = 12, PRKN "two-variants" n = 12). Using ONT long-read sequencing, we detected a second pathogenic variant in six PRKN "one-variant" patients (26%, 6/23) but none in the PINK1 "one-variant" patients (0%, 0/12). Long-read sequencing identified one case with a complex inversion, two instances of structural variant overlap, and three cases of duplication. In addition, in the positive control PRKN "two-variants" group, we were able to identify both pathogenic variants in PRKN in all the patients (100%, 12/12). Conclusions This data highlights that ONT long-read sequencing is a powerful tool to identify a pathogenic structural variant at the PRKN locus that is often missed by conventional methods. Therefore, for cases where conventional methods fail to detect a second variant for EOPD, long-read sequencing should be considered as an alternative and complementary approach.
Collapse
Affiliation(s)
- Kensuke Daida
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Laksh Malik
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Breeana Baker
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mayu Ishiguro
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Rylee Genner
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly Paquette
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yuanzhe Li
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, Koto-ku, Tokyo, Japan
| | | | - Makito Hirano
- Department of Neurology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kenta Takahashi
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Mikhail Kolmogolv
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kimberley J Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Manabu Funayama
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Cornelis Blauwendraat
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Wako, Saitama, Japan
| |
Collapse
|
8
|
Liu CC, Capart MMM, Lin JJ. Mismatch repair enzymes regulate telomere recombination in Saccharomycescerevisiae. Biochem Biophys Res Commun 2024; 707:149768. [PMID: 38489874 DOI: 10.1016/j.bbrc.2024.149768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
DNA mismatch repair (MMR) is a crucial mechanism that ensures chromosome stability and prevents the development of various human cancers. Apart from its role in correcting mismatches during DNA replication, MMR also plays a significant role in regulating recombination between non-identical sequences, a process known as homeologous recombination. Telomeres, the protective ends of eukaryotic chromosomes, possess sequences that are not perfectly homologous. While telomerase primarily maintains telomere length in the yeast Saccharomyces cerevisiae, recombination between telomeres becomes a major pathway for length maintenance in cells lacking telomerase. This study investigates the participation of MMR in telomere recombination. Our findings reveal that mutations in MMR genes activate type I recombination. Notably, among the MMR proteins, MutSα (Msh2 and Msh6) and MutLα (Mlh1 and Pms1) exerted the most pronounced effects on telomere recombination. We also found that yeast cells containing simple human telomeric TTAGGG DNA sequences preferentially utilize type II recombination to maintain their telomeres, highlighting the influence of the heterogeneous nature of yeast telomeric sequences on type II recombination. Furthermore, our observations indicate that MMR activity is indispensable for its impact on telomere recombination. Collectively, these results contribute to a more comprehensive understanding of the role of MMR in telomere recombination.
Collapse
Affiliation(s)
- Chia-Chun Liu
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mathilde M M Capart
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
9
|
Elango R, Nilavar N, Li AG, Duffey EE, Jiang Y, Nguyen D, Abakir A, Willis NA, Houseley J, Scully R. Two-ended recombination at a Flp-nickase-broken replication fork. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588130. [PMID: 38645103 PMCID: PMC11030319 DOI: 10.1101/2024.04.10.588130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Collision of a replication fork with a DNA nick is thought to generate a one-ended break, fostering genomic instability. Collision of the opposing converging fork with the nick could, in principle, form a second DNA end, enabling conservative repair by homologous recombination (HR). To study mechanisms of nickase-induced HR, we developed the Flp recombinase "step arrest" nickase in mammalian cells. Flp-nickase-induced HR entails two-ended, BRCA2/RAD51-dependent short tract gene conversion (STGC), BRCA2/RAD51-independent long tract gene conversion, and discoordinated two-ended invasions. HR induced by a replication-independent break and by the Flp-nickase differ in their dependence on BRCA1 . To determine the origin of the second DNA end during Flp-nickase-induced STGC, we blocked the opposing fork using a site-specific Tus/ Ter replication fork barrier. Flp-nickase-induced STGC remained robust and two-ended. Thus, collision of a single replication fork with a Flp-nick can trigger two-ended HR, possibly reflecting replicative bypass of lagging strand nicks. This response may limit genomic instability during replication of a nicked DNA template.
Collapse
|
10
|
Kawabata T, Sekiya R, Goto S, Li TS. Chronic replication stress invokes mitochondria dysfunction via impaired parkin activity. Sci Rep 2024; 14:7877. [PMID: 38570643 PMCID: PMC10991263 DOI: 10.1038/s41598-024-58656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/02/2024] [Indexed: 04/05/2024] Open
Abstract
Replication stress is a major contributor to tumorigenesis because it provides a source of chromosomal rearrangements via recombination events. PARK2, which encodes parkin, a regulator of mitochondrial homeostasis, is located on one of the common fragile sites that are prone to rearrangement by replication stress, indicating that replication stress may potentially impact mitochondrial homeostasis. Here, we show that chronic low-dose replication stress causes a fixed reduction in parkin expression, which is associated with mitochondrial dysfunction, indicated by an increase in mtROS. Consistent with the major role of parkin in mitophagy, reduction in parkin protein expression was associated with a slight decrease in mitophagy and changes in mitochondrial morphology. In contrast, cells expressing ectopic PARK2 gene does not show mtROS increases and changes in mitochondrial morphology even after exposure to chronic replication stress, suggesting that intrinsic fragility at PARK2 loci associated with parkin reduction is responsible for mitochondrial dysfunction caused by chronic replication stress. As endogenous replication stress and mitochondrial dysfunction are both involved in multiple pathophysiology, our data support the therapeutic development of recovery of parkin expression in human healthcare.
Collapse
Affiliation(s)
- Tsuyoshi Kawabata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.
| | - Reiko Sekiya
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
11
|
Handoko, Adham M, Rachmadi L, Wibowo H, Gondhowiardjo SA. Cold Tumour Phenotype Explained Through Whole Genome Sequencing in Clinical Nasopharyngeal Cancer: A Preliminary Study. Immunotargets Ther 2024; 13:173-182. [PMID: 38524775 PMCID: PMC10959245 DOI: 10.2147/itt.s452117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Nasopharyngeal cancer (NPC) is a complex cancer due to its unique genomic features and association with the Epstein-Barr virus (EBV). Despite therapeutic advancements, NPC prognosis remains poor, necessitating a deeper understanding of its genomics. Here, we present a comprehensive whole genome sequencing (WGS) view of NPC genomics and its correlation with the phenotype. Methods This study involved WGS of a clinical NPC biopsy specimen. Sequencing was carried out using a long read sequencer from Oxford Nanopore. Analysis of the variants involved correlation with the phenotype of NPC. Results A loss of genes within chromosome 6 from copy number variation (CNV) was found. The lost genes included HLA-A, HLA-B, and HLA-C, which work in the antigen presentation process. This loss of the major histocompatibility complex (MHC) apparatus resulted in the tumour's ability to evade immune recognition. The tumour exhibited an immunologically "cold" phenotype, with mild tumour-infiltrating lymphocytes, supporting the possible etiology of loss of antigen presentation capability. Furthermore, the driver mutation PIK3CA gene was identified along with various other gene variants affecting numerous signaling pathways. Discussion Comprehensive WGS was able to detect various mutations and genomic losses, which could explain tumour progression and immune evasion ability. Furthermore, the study identified the loss of other genes related to cancer and immune pathways, emphasizing the complexity of NPC genomics. In conclusion, this study underscores the significance of MHC class I gene loss and its probable correlation with the cold tumour phenotype observed in NPC.
Collapse
Affiliation(s)
- Handoko
- Department of Radiation Oncology, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Marlinda Adham
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Otorhinolaryngology - Head and Neck Surgery Department, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Lisnawati Rachmadi
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Anatomical Pathology, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Heri Wibowo
- Integrated Laboratory, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Soehartati A Gondhowiardjo
- Department of Radiation Oncology, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
12
|
Musmaker K, Wells J, Tsai MC, Comeron JM, Malkova A. Alternative Lengthening of Telomeres in Yeast: Old Questions and New Approaches. Biomolecules 2024; 14:113. [PMID: 38254712 PMCID: PMC10813009 DOI: 10.3390/biom14010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Alternative lengthening of telomeres (ALT) is a homologous recombination-based pathway utilized by 10-15% of cancer cells that allows cells to maintain their telomeres in the absence of telomerase. This pathway was originally discovered in the yeast Saccharomyces cerevisiae and, for decades, yeast has served as a robust model to study ALT. Using yeast as a model, two types of ALT (RAD51-dependent and RAD51-independent) have been described. Studies in yeast have provided the phenotypic characterization of ALT survivors, descriptions of the proteins involved, and implicated break-induced replication (BIR) as the mechanism responsible for ALT. Nevertheless, many questions have remained, and answering them has required the development of new quantitative methods. In this review we discuss the historic aspects of the ALT investigation in yeast as well as new approaches to investigating ALT, including ultra-long sequencing, computational modeling, and the use of population genetics. We discuss how employing new methods contributes to our current understanding of the ALT mechanism and how they may expand our understanding of ALT in the future.
Collapse
Affiliation(s)
- Kendra Musmaker
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA (J.W.)
| | - Jacob Wells
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA (J.W.)
| | - Meng-Chia Tsai
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA (J.W.)
| | - Josep M. Comeron
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA (J.W.)
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA (J.W.)
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
13
|
Caldecott KW. Causes and consequences of DNA single-strand breaks. Trends Biochem Sci 2024; 49:68-78. [PMID: 38040599 DOI: 10.1016/j.tibs.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
DNA single-strand breaks (SSBs) are among the most common lesions arising in human cells, with tens to hundreds of thousands arising in each cell, each day. Cells have efficient mechanisms for the sensing and repair of these ubiquitous DNA lesions, but the failure of these processes to rapidly remove SSBs can lead to a variety of pathogenic outcomes. The threat posed by unrepaired SSBs is illustrated by the existence of at least six genetic diseases in which SSB repair (SSBR) is defective, all of which are characterised by neurodevelopmental and/or neurodegenerative pathology. Here, I review current understanding of how SSBs arise and impact on critical molecular processes, such as DNA replication and gene transcription, and their links to human disease.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK.
| |
Collapse
|
14
|
Spegg V, Altmeyer M. Genome maintenance meets mechanobiology. Chromosoma 2024; 133:15-36. [PMID: 37581649 PMCID: PMC10904543 DOI: 10.1007/s00412-023-00807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Manzato C, Larini L, Oss Pegorar C, Dello Stritto MR, Jurikova K, Jantsch V, Cusanelli E. TERRA expression is regulated by the telomere-binding proteins POT-1 and POT-2 in Caenorhabditis elegans. Nucleic Acids Res 2023; 51:10681-10699. [PMID: 37713629 PMCID: PMC10602879 DOI: 10.1093/nar/gkad742] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
Several aspects of telomere biology are regulated by the telomeric repeat-containing RNA TERRA. While TERRA expression is conserved through evolution, species-specific mechanisms regulate its biogenesis and function. Here we report on the expression of TERRA in Caenorhabditis elegans. We show that C. elegans TERRA is regulated by the telomere-binding proteins POT-1 and POT-2 which repress TERRA in a telomere-specific manner. C. elegans TERRA transcripts are heterogeneous in length and form discrete nuclear foci, as detected by RNA FISH, in both postmitotic and germline cells; a fraction of TERRA foci localizes to telomeres. Interestingly, in germ cells, TERRA is expressed in all stages of meiotic prophase I, and it increases during pachytene, a stage in meiosis when homologous recombination is ongoing. We used the MS2-GFP system to study the spatiotemporal dynamics of single-telomere TERRA molecules. Single particle tracking revealed different types of motilities, suggesting complex dynamics of TERRA transcripts. Finally, we unveiled distinctive features of C. elegans TERRA, which is regulated by telomere shortening in a telomere-specific manner, and it is upregulated in the telomerase-deficient trt-1; pot-2 double mutant prior to activation of the alternative lengthening mechanism ALT. Interestingly, in these worms TERRA displays distinct dynamics with a higher fraction of fast-moving particles.
Collapse
Affiliation(s)
- Caterina Manzato
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| | - Luca Larini
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| | - Claudio Oss Pegorar
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| | - Maria Rosaria Dello Stritto
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter 1030, Vienna, Austria
| | - Katarina Jurikova
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina 84215, Bratislava, Slovakia
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter 1030, Vienna, Austria
| | - Emilio Cusanelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| |
Collapse
|
16
|
Tomita A, Sasanuma H, Owa T, Nakazawa Y, Shimada M, Fukuoka T, Ogi T, Nakada S. Inducing multiple nicks promotes interhomolog homologous recombination to correct heterozygous mutations in somatic cells. Nat Commun 2023; 14:5607. [PMID: 37714828 PMCID: PMC10504326 DOI: 10.1038/s41467-023-41048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
CRISPR/Cas9-mediated gene editing has great potential utility for treating genetic diseases. However, its therapeutic applications are limited by unintended genomic alterations arising from DNA double-strand breaks and random integration of exogenous DNA. In this study, we propose NICER, a method for correcting heterozygous mutations that employs multiple nicks (MNs) induced by Cas9 nickase and a homologous chromosome as an endogenous repair template. Although a single nick near the mutation site rarely leads to successful gene correction, additional nicks on homologous chromosomes strongly enhance gene correction efficiency via interhomolog homologous recombination (IH-HR). This process partially depends on BRCA1 and BRCA2, suggesting the existence of several distinct pathways for MN-induced IH-HR. According to a genomic analysis, NICER rarely induces unintended genomic alterations. Furthermore, NICER restores the expression of disease-causing genes in cells derived from genetic diseases with compound heterozygous mutations. Overall, NICER provides a precise strategy for gene correction.
Collapse
Affiliation(s)
- Akiko Tomita
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Sasanuma
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-0057, Japan
| | - Tomoo Owa
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, 464-8601, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, 464-8601, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, 464-8601, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, 464-8601, Japan
| | - Takahiro Fukuoka
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, 464-8601, Japan
- Genomedia Inc., Tokyo, 113-0033, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, 464-8601, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, 464-8601, Japan
| | - Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
17
|
Lever R, Simmons E, Gamble-Milner R, Buckley R, Harrison C, Parkes A, Mitchell L, Gausden J, Škulj S, Bertoša B, Bolt E, Allers T. Archaeal Hel308 suppresses recombination through a catalytic switch that controls DNA annealing. Nucleic Acids Res 2023; 51:8563-8574. [PMID: 37409572 PMCID: PMC10484726 DOI: 10.1093/nar/gkad572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Hel308 helicases promote genome stability in archaea and are conserved in metazoans, where they are known as HELQ. Their helicase mechanism is well characterised, but it is unclear how they specifically contribute to genome stability in archaea. We show here that a highly conserved motif of Hel308/HELQ helicases (motif IVa, F/YHHAGL) modulates both DNA unwinding and a newly identified strand annealing function of archaeal Hel308. A single amino acid substitution in motif IVa results in hyper-active DNA helicase and annealase activities of purified Hel308 in vitro. All-atom molecular dynamics simulations using Hel308 crystal structures provided a molecular basis for these differences between mutant and wild type Hel308. In archaeal cells, the same mutation results in 160000-fold increased recombination, exclusively as gene conversion (non-crossover) events. However, crossover recombination is unaffected by the motif IVa mutation, as is cell viability or DNA damage sensitivity. By contrast, cells lacking Hel308 show impaired growth, increased sensitivity to DNA cross-linking agents, and only moderately increased recombination. Our data reveal that archaeal Hel308 suppresses recombination and promotes DNA repair, and that motif IVa in the RecA2 domain acts as a catalytic switch to modulate the separable recombination and repair activities of Hel308.
Collapse
Affiliation(s)
- Rebecca J Lever
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Emily Simmons
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | | | - Ryan J Buckley
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Catherine Harrison
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ashley J Parkes
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Laura Mitchell
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jacob A Gausden
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Sanja Škulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Edward L Bolt
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
18
|
Watson AJ, Shaffer ML, Bouley RA, Petreaca RC. F-box DNA Helicase 1 (FBH1) Contributes to the Destabilization of DNA Damage Repair Machinery in Human Cancers. Cancers (Basel) 2023; 15:4439. [PMID: 37760409 PMCID: PMC10526855 DOI: 10.3390/cancers15184439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Homologous recombination (HR) is the major mechanism of rescue of stalled replication forks or repair of DNA double-strand breaks (DSBs) during S phase or mitosis. In human cells, HR is facilitated by the BRCA2-BRCA1-PALB2 module, which loads the RAD51 recombinase onto a resected single-stranded DNA end to initiate repair. Although the process is essential for error-free repair, unrestrained HR can cause chromosomal rearrangements and genome instability. F-box DNA Helicase 1 (FBH1) antagonizes the role of BRCA2-BRCA1-PALB2 to restrict hyper-recombination and prevent genome instability. Here, we analyzed reported FBH1 mutations in cancer cells using the Catalogue of Somatic Mutations in Cancers (COSMIC) to understand how they interact with the BRCA2-BRCA1-PALB2. Consistent with previous results from yeast, we find that FBH1 mutations co-occur with BRCA2 mutations and to some degree BRCA1 and PALB2. We also describe some co-occurring mutations with RAD52, the accessory RAD51 loader and facilitator of single-strand annealing, which is independent of RAD51. In silico modeling was used to investigate the role of key FBH1 mutations on protein function, and a Q650K mutation was found to destabilize the protein structure. Taken together, this work highlights how mutations in several DNA damage repair genes contribute to cellular transformation and immortalization.
Collapse
Affiliation(s)
- Alizhah J. Watson
- Biology Program, The Ohio State University, Marion, OH 433023, USA; (A.J.W.); (M.L.S.)
| | - Michaela L. Shaffer
- Biology Program, The Ohio State University, Marion, OH 433023, USA; (A.J.W.); (M.L.S.)
| | - Renee A. Bouley
- Department of Chemistry and Biochemistry, The Ohio State University, Marion, OH 43302, USA
| | - Ruben C. Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
- Cancer Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Zhang T, Rawal Y, Jiang H, Kwon Y, Sung P, Greenberg RA. Break-induced replication orchestrates resection-dependent template switching. Nature 2023; 619:201-208. [PMID: 37316655 PMCID: PMC10937050 DOI: 10.1038/s41586-023-06177-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 05/05/2023] [Indexed: 06/16/2023]
Abstract
Break-induced telomere synthesis (BITS) is a RAD51-independent form of break-induced replication that contributes to alternative lengthening of telomeres1,2. This homology-directed repair mechanism utilizes a minimal replisome comprising proliferating cell nuclear antigen (PCNA) and DNA polymerase-δ to execute conservative DNA repair synthesis over many kilobases. How this long-tract homologous recombination repair synthesis responds to complex secondary DNA structures that elicit replication stress remains unclear3-5. Moreover, whether the break-induced replisome orchestrates additional DNA repair events to ensure processivity is also unclear. Here we combine synchronous double-strand break induction with proteomics of isolated chromatin segments (PICh) to capture the telomeric DNA damage response proteome during BITS1,6. This approach revealed a replication stress-dominated response, highlighted by repair synthesis-driven DNA damage tolerance signalling through RAD18-dependent PCNA ubiquitination. Furthermore, the SNM1A nuclease was identified as the major effector of ubiquitinated PCNA-dependent DNA damage tolerance. SNM1A recognizes the ubiquitin-modified break-induced replisome at damaged telomeres, and this directs its nuclease activity to promote resection. These findings show that break-induced replication orchestrates resection-dependent lesion bypass, with SNM1A nuclease activity serving as a critical effector of ubiquitinated PCNA-directed recombination in mammalian cells.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yashpal Rawal
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Haoyang Jiang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Raseley K, Jinwala Z, Zhang D, Xiao M. Single-Molecule Telomere Assay via Optical Mapping (SMTA-OM) Can Potentially Define the ALT Positivity of Cancer. Genes (Basel) 2023; 14:1278. [PMID: 37372458 DOI: 10.3390/genes14061278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Telomeres play an essential role in protecting the ends of linear chromosomes and maintaining the integrity of the human genome. One of the key hallmarks of cancers is their replicative immortality. As many as 85-90% of cancers activate the expression of telomerase (TEL+) as the telomere maintenance mechanism (TMM), and 10-15% of cancers utilize the homology-dependent repair (HDR)-based Alternative Lengthening of Telomere (ALT+) pathway. Here, we performed statistical analysis of our previously reported telomere profiling results from Single Molecule Telomere Assay via Optical Mapping (SMTA-OM), which is capable of quantifying individual telomeres from single molecules across all chromosomes. By comparing the telomeric features from SMTA-OM in TEL+ and ALT+ cancer cells, we demonstrated that ALT+ cancer cells display certain unique telomeric profiles, including increased fusions/internal telomere-like sequence (ITS+), fusions/internal telomere-like sequence loss (ITS-), telomere-free ends (TFE), super-long telomeres, and telomere length heterogeneity, compared to TEL+ cancer cells. Therefore, we propose that ALT+ cancer cells can be differentiated from TEL+ cancer cells using the SMTA-OM readouts as biomarkers. In addition, we observed variations in SMTA-OM readouts between different ALT+ cell lines that may potentially be used as biomarkers for discerning subtypes of ALT+ cancer and monitoring the response to cancer therapy.
Collapse
Affiliation(s)
- Kaitlin Raseley
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Zeal Jinwala
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
- Center for Cancer Research, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Ming Xiao
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA
- Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute of Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
21
|
Zhang D, Eckert KA, Lee MYWT. Special Issue "DNA Replication/Repair, and the DNA Damage Response in Human Disease". Genes (Basel) 2023; 14:893. [PMID: 37107651 PMCID: PMC10137425 DOI: 10.3390/genes14040893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Mutations of numerous genes involved in DNA replication, DNA repair, and DNA damage response (DDR) pathways lead to a variety of human diseases, including aging and cancer [...].
Collapse
Affiliation(s)
- Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
- Center for Cancer Research, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Kristin A. Eckert
- Gittlen Cancer Research Laboratories, Department of Pathology, Penn State University College of Medicine, Hershey, PA 17036, USA
| | - Marietta Y. W. T. Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
22
|
Arcangioli B, Gangloff S. The Fission Yeast Mating-Type Switching Motto: "One-for-Two" and "Two-for-One". Microbiol Mol Biol Rev 2023; 87:e0000821. [PMID: 36629411 PMCID: PMC10029342 DOI: 10.1128/mmbr.00008-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Schizosaccharomyces pombe is an ascomycete fungus that divides by medial fission; it is thus commonly referred to as fission yeast, as opposed to the distantly related budding yeast Saccharomyces cerevisiae. The reproductive lifestyle of S. pombe relies on an efficient genetic sex determination system generating a 1:1 sex ratio and using alternating haploid/diploid phases in response to environmental conditions. In this review, we address how one haploid cell manages to generate two sister cells with opposite mating types, a prerequisite to conjugation and meiosis. This mating-type switching process depends on two highly efficient consecutive asymmetric cell divisions that rely on DNA replication, repair, and recombination as well as the structure and components of heterochromatin. We pay special attention to the intimate interplay between the genetic and epigenetic partners involved in this process to underscore the importance of basic research and its profound implication for a better understanding of chromatin biology.
Collapse
Affiliation(s)
- Benoît Arcangioli
- Genome Dynamics Unit, Genomes and Genetics Department, Pasteur Institute, Paris, France
| | - Serge Gangloff
- Genome Dynamics Unit, Genomes and Genetics Department, Pasteur Institute, Paris, France
- UMR3525, Genetics of Genomes, CNRS-Pasteur Institute, Paris, France
| |
Collapse
|
23
|
Benitez A, Sebald M, Kanagaraj R, Rodrigo-Brenni MC, Chan YW, Liang CC, West SC. GEN1 promotes common fragile site expression. Cell Rep 2023; 42:112062. [PMID: 36729836 DOI: 10.1016/j.celrep.2023.112062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Our genomes harbor conserved DNA sequences, known as common fragile sites (CFSs), that are difficult to replicate and correspond to regions of genome instability. Following replication stress, CFS loci give rise to breaks or gaps (termed CFS expression) where under-replicated DNA subsequently undergoes mitotic DNA synthesis (MiDAS). We show that loss of the structure-selective endonuclease GEN1 reduces CFS expression, leading to defects in MiDAS, ultrafine anaphase bridge formation, and DNA damage in the ensuing cell cycle due to aberrant chromosome segregation. GEN1 knockout cells also exhibit an elevated frequency of bichromatid constrictions consistent with the presence of unresolved regions of under-replicated DNA. Previously, the role of GEN1 was thought to be restricted to the nucleolytic resolution of recombination intermediates. However, its ability to cleave under-replicated DNA at CFS loci indicates that GEN1 plays a dual role resolving both DNA replication and recombination intermediates before chromosome segregation.
Collapse
Affiliation(s)
- Anaid Benitez
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Marie Sebald
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Radhakrishnan Kanagaraj
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Monica C Rodrigo-Brenni
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Ying Wai Chan
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Chih-Chao Liang
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Stephen C West
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
24
|
He L, Lever R, Cubbon A, Tehseen M, Jenkins T, Nottingham AO, Horton A, Betts H, Fisher M, Hamdan SM, Soultanas P, Bolt EL. Interaction of human HelQ with DNA polymerase delta halts DNA synthesis and stimulates DNA single-strand annealing. Nucleic Acids Res 2023; 51:1740-1749. [PMID: 36718939 PMCID: PMC9976902 DOI: 10.1093/nar/gkad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
DNA strand breaks are repaired by DNA synthesis from an exposed DNA end paired with a homologous DNA template. DNA polymerase delta (Pol δ) catalyses DNA synthesis in multiple eukaryotic DNA break repair pathways but triggers genome instability unless its activity is restrained. We show that human HelQ halts DNA synthesis by isolated Pol δ and Pol δ-PCNA-RPA holoenzyme. Using novel HelQ mutant proteins we identify that inhibition of Pol δ is independent of DNA binding, and maps to a 70 amino acid intrinsically disordered region of HelQ. Pol δ and its POLD3 subunit robustly stimulated DNA single-strand annealing by HelQ, and POLD3 and HelQ interact physically via the intrinsically disordered HelQ region. This data, and inability of HelQ to inhibit DNA synthesis by the POLD1 catalytic subunit of Pol δ, reveal a mechanism for limiting DNA synthesis and promoting DNA strand annealing during human DNA break repair, which centres on POLD3.
Collapse
Affiliation(s)
- Liu He
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Rebecca Lever
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Andrew Cubbon
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Muhammad Tehseen
- Bioscience Program, Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tabitha Jenkins
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Anya Horton
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Hannah Betts
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham, UK
| | | | - Samir M Hamdan
- Bioscience Program, Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham, UK
| | - Edward L Bolt
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
25
|
Niu Z, Jiang D, Shen J, Liu W, Tan X, Cao G. Potential Role of the Fragile Histidine Triad in Cancer Evo-Dev. Cancers (Basel) 2023; 15:cancers15041144. [PMID: 36831487 PMCID: PMC9954361 DOI: 10.3390/cancers15041144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Cancer development follows an evolutionary pattern of "mutation-selection-adaptation" detailed by Cancer Evolution and Development (Cancer Evo-Dev), a theory that represents a process of accumulating somatic mutations due to the imbalance between the mutation-promoting force and the mutation-repairing force and retro-differentiation of the mutant cells to cancer initiation cells in a chronic inflammatory microenvironment. The fragile histidine triad (FHIT) gene is a tumor suppressor gene whose expression is often reduced or inactivated in precancerous lesions during chronic inflammation or virus-induced replicative stress. Here, we summarize evidence regarding the mechanisms by which the FHIT is inactivated in cancer, including the loss of heterozygosity and the promoter methylation, and characterizes the role of the FHIT in bridging macroevolution and microevolution and in facilitating retro-differentiation during cancer evolution and development. It is suggested that decreased FHIT expression is involved in several critical steps of Cancer Evo-Dev. Future research needs to focus on the role and mechanisms of the FHIT in promoting the transformation of pre-cancerous lesions into cancer.
Collapse
Affiliation(s)
- Zheyun Niu
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine Tongji University, Shanghai 200120, China
| | - Dongming Jiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine Tongji University, Shanghai 200120, China
| | - Jiaying Shen
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine Tongji University, Shanghai 200120, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai 200433, China
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Xiaojie Tan
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai 200433, China
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Guangwen Cao
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine Tongji University, Shanghai 200120, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai 200433, China
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
- Correspondence: ; Tel.: +86-21-81871060
| |
Collapse
|
26
|
RAD51 paralogs: Expanding roles in replication stress responses and repair. Curr Opin Pharmacol 2022; 67:102313. [PMID: 36343481 DOI: 10.1016/j.coph.2022.102313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Mammalian RAD51 paralogs are essential for cell survival and are critical for RAD51-mediated repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). However, the molecular mechanism by which RAD51 paralogs participate in HR is largely unclear. Germline mutations in RAD51 paralogs are associated with breast and ovarian cancers and Fanconi anemia-like disorder, underscoring the crucial roles of RAD51 paralogs in genome maintenance and tumor suppression. Despite their discovery over three decades ago, the essential functions of RAD51 paralogs in cell survival and genome stability remain obscure. Recent studies unravel DSB repair independent functions of RAD51 paralogs in replication stress responses. Here, we highlight the recent findings that uncovered the novel functions of RAD51 paralogs in replication fork progression, its stability, and restart and discuss RAD51 paralogs as a potential therapeutic target for cancer treatment.
Collapse
|
27
|
Hassani MA, Murid J, Yan J. Regulator of telomere elongation helicase 1 gene and its association with malignancy. Cancer Rep (Hoboken) 2022; 6:e1735. [PMID: 36253342 PMCID: PMC9875622 DOI: 10.1002/cnr2.1735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND With the progression of next-generation sequencing technologies, researchers have identified numerous variants of the regulator of telomere elongation helicase 1 (RTEL1) gene that are associated with a broad spectrum of phenotypic manifestations, including malignancies. At the molecular level, RTEL1 is involved in the regulation of the repair, replication, and transcription of deoxyribonucleic acid (DNA) and the maintenance of telomere length. RTEL1 can act both as a promotor and inhibitor of tumorigenesis. Here, we review the potential mechanisms implicated in the malignant transformation of tissues under conditions of RTEL1 deficiency or its aberrant overexpression. RECENT FINDINGS A major hemostatic challenge during RTEL1 dysfunction could arise from its unbalanced activity for unwinding guanine-rich quadruplex DNA (G4-DNA) structures. In contrast, RTEL1 deficiency leads to alterations in telomeric and genome-wide DNA maintenance mechanisms, ribonucleoprotein metabolism, and the creation of an inflammatory and immune-deficient microenvironment, all promoting malignancy. Additionally, we hypothesize that functionally similar molecules could act to compensate for the deteriorated functions of RTEL1, thereby facilitating the survival of malignant cells. On the contrary, RTEL1 over-expression was directed toward G4-unwinding, by promoting replication fork progression and maintaining intact telomeres, may facilitate malignant transformation and proliferation of various pre-malignant cellular compartments. CONCLUSIONS Therefore, restoring the equilibrium of RTEL1 functions could serve as a therapeutic approach for preventing and treating malignancies.
Collapse
Affiliation(s)
- Mohammad Arian Hassani
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of HematologySecond Hospital of Dalian Medical UniversityDalianChina,Department of Hematology, Endocrinology and Rheumatology, Ali Abad Teaching HospitalKabul University of Medical SciencesJamal menaKabulAfghanistan
| | - Jamshid Murid
- Department of Hematology, Endocrinology and Rheumatology, Ali Abad Teaching HospitalKabul University of Medical SciencesJamal menaKabulAfghanistan
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of HematologySecond Hospital of Dalian Medical UniversityDalianChina,Diamond Bay Institute of HematologySecond Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
28
|
Zhang S, Lee EYC, Lee MYWT, Zhang D. DNA polymerase delta interacting protein 3 facilitates the activation and maintenance of DNA damage checkpoint in response to replication stress. Animal Model Exp Med 2022; 5:461-469. [PMID: 36168146 PMCID: PMC9610138 DOI: 10.1002/ame2.12274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 01/22/2023] Open
Abstract
Background Replication stress response is crucial for the maintenance of a stable genome. POLDIP3 (DNA polymerase delta interacting protein 3) was initially identified as one of the DNA polymerase δ (Pol δ) interacting proteins almost 20 years ago. Using a variety of in vitro biochemical assays, we previously established that POLDIP3 is a key regulator of the enzymatic activity of Pol δ. However, the in vivo function of POLDIP3 in DNA replication and DNA damage response has been elusive. Methods We first generated POLDIP3 knockout (KO) cells using the CRISPR/Cas9 technology. We then investigated its biological functions in vivo using a variety of biochemical and cell biology assays. Results We showed that although the POLDIP3‐KO cells manifest no pronounced defect in global DNA synthesis under nonstress conditions, they are sensitive to a variety of replication fork blockers. Intriguingly, we found that POLDIP3 plays a crucial role in the activation and maintenance of the DNA damage checkpoint in response to exogenous as well as endogenous replication stress. Conclusion Our results indicate that when the DNA replication fork is blocked, POLDIP3 can be recruited to the stalled replication fork and functions to bridge the early DNA damage checkpoint response and the later replication fork repair/restart.
Collapse
Affiliation(s)
- Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, New York, USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, New York, USA
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, New York, USA
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, New York, USA
| |
Collapse
|
29
|
Yoshida K, Ishimoto R, Fujita M. Microscopic Detection of DNA Synthesis in Early Mitosis at Repetitive lacO Sequences in Human Cells. Bio Protoc 2022; 12:e4504. [PMID: 36213106 PMCID: PMC9501721 DOI: 10.21769/bioprotoc.4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 12/29/2022] Open
Abstract
In the human cell cycle, complete replication of DNA is a fundamental process for the maintenance of genome integrity. Replication stress interfering with the progression of replication forks causes difficult-to-replicate regions to remain under-replicated until the onset of mitosis. In early mitosis, a homology-directed repair DNA synthesis, called mitotic DNA synthesis (MiDAS), is triggered to complete DNA replication. Here, we present a method to detect MiDAS in human U2OS 40-2-6 cells, in which repetitive lacO sequences integrated into the human chromosome evoke replication stress and concomitant incomplete replication of the lacO array. Immunostaining of BrdU and LacI proteins is applied for visualization of DNA synthesis in early mitosis and the lacO array, respectively. This protocol has been established to easily detect MiDAS at specific loci using only common immunostaining methods and may be optimized for the investigation of other difficult-to-replicate regions marked with site-specific binding proteins.
Collapse
Affiliation(s)
- Kazumasa Yoshida
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
,
Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka, Japan
| | - Riko Ishimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
,
*For correspondence:
| |
Collapse
|
30
|
Choi J, Kong M, Gallagher DN, Li K, Bronk G, Cao Y, Greene EC, Haber JE. Repair of mismatched templates during Rad51-dependent Break-Induced Replication. PLoS Genet 2022; 18:e1010056. [PMID: 36054210 PMCID: PMC9477423 DOI: 10.1371/journal.pgen.1010056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/15/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Using budding yeast, we have studied Rad51-dependent break-induced replication (BIR), where the invading 3’ end of a site-specific double-strand break (DSB) and a donor template share 108 bp of homology that can be easily altered. BIR still occurs about 10% as often when every 6th base is mismatched as with a perfectly matched donor. Here we explore the tolerance of mismatches in more detail, by examining donor templates that each carry 10 mismatches, each with different spatial arrangements. Although 2 of the 6 arrangements we tested were nearly as efficient as the evenly-spaced reference, 4 were significantly less efficient. A donor with all 10 mismatches clustered at the 3’ invading end of the DSB was not impaired compared to arrangements where mismatches were clustered at the 5’ end. Our data suggest that the efficiency of strand invasion is principally dictated by thermodynamic considerations, i.e., by the total number of base pairs that can be formed; but mismatch position-specific effects are also important. We also addressed an apparent difference between in vitro and in vivo strand exchange assays, where in vitro studies had suggested that at a single contiguous stretch of 8 consecutive bases was needed to be paired for stable strand pairing, while in vivo assays using 108-bp substrates found significant recombination even when every 6th base was mismatched. Now, using substrates of either 90 or 108 nt–the latter being the size of the in vivo templates–we find that in vitro D-loop results are very similar to the in vivo results. However, there are still notable differences between in vivo and in vitro assays that are especially evident with unevenly-distributed mismatches. Mismatches in the donor template are incorporated into the BIR product in a strongly polar fashion up to ~40 nucleotides from the 3’ end. Mismatch incorporation depends on the 3’→ 5’ proofreading exonuclease activity of DNA polymerase δ, with little contribution from Msh2/Mlh1 mismatch repair proteins, or from Rad1-Rad10 flap nuclease or the Mph1 helicase. Surprisingly, the probability of a mismatch 27 nt from the 3’ end being replaced by donor sequence was the same whether the preceding 26 nucleotides were mismatched every 6th base or fully homologous. These data suggest that DNA polymerase δ “chews back” the 3’ end of the invading strand without any mismatch-dependent cues from the strand invasion structure. However, there appears to be an alternative way to incorporate a mismatch at the first base at the 3’ end of the donor. DNA double-strand breaks (DSBs) are the most lethal forms of DNA damage and inaccurate repair of these breaks presents a serious threat to genomic integrity and cell viability. Break-induced replication (BIR) is a homologous recombination pathway that results in a nonreciprocal translocation of chromosome ends. We used budding yeast Saccharomyces cerevisiae to investigate Rad51-mediated BIR, where the invading 3’ end of the DSB and a donor template share 108 bp of homology. We examined the tolerance of differently distributed mismatches on a homologous donor template. A donor with all 10 mismatches clustered every 6th base at the 3’ invading end of the DSB was not impaired compared to arrangements where mismatches were clustered at the 5’ end. We also compared the efficiency of in vivo BIR with in vitro D-loop formation and find that for substrates of the same length, the tolerance for mismatches is comparable. However, there are still notable differences between in vivo and in vitro assays that are especially evident in substrates with unevenly-distributed mismatches. Mismatches are incorporated into the BIR product in a strongly polar fashion as far as about 40 nucleotides from the 3’ end, dependent on the 5’ to 3’ proofreading activity of DNA polymerase δ. Pol δ can “chew back” the 3’ end of the invading strand even when the sequences removed have no mismatches for the first 26 nucleotides. However, a mismatch at the first base can be removed from the 3’ end by another, unidentified mechanism.
Collapse
Affiliation(s)
- Jihyun Choi
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Muwen Kong
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Danielle N. Gallagher
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Kevin Li
- Department of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Gabriel Bronk
- Department of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Yiting Cao
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Eric C. Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
Mladenov E, Paul-Konietzko K, Mladenova V, Stuschke M, Iliakis G. Increased Gene Targeting in Hyper-Recombinogenic LymphoBlastoid Cell Lines Leaves Unchanged DSB Processing by Homologous Recombination. Int J Mol Sci 2022; 23:9180. [PMID: 36012445 PMCID: PMC9409177 DOI: 10.3390/ijms23169180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
In the cells of higher eukaryotes, sophisticated mechanisms have evolved to repair DNA double-strand breaks (DSBs). Classical nonhomologous end joining (c-NHEJ), homologous recombination (HR), alternative end joining (alt-EJ) and single-strand annealing (SSA) exploit distinct principles to repair DSBs throughout the cell cycle, resulting in repair outcomes of different fidelity. In addition to their functions in DSB repair, the same repair pathways determine how cells integrate foreign DNA or rearrange their genetic information. As a consequence, random integration of DNA fragments is dominant in somatic cells of higher eukaryotes and suppresses integration events at homologous genomic locations, leading to very low gene-targeting efficiencies. However, this response is not universal, and embryonic stem cells display increased targeting efficiency. Additionally, lymphoblastic chicken and human cell lines DT40 and NALM6 show up to a 1000-fold increased gene-targeting efficiency that is successfully harnessed to generate knockouts for a large number of genes. We inquired whether the increased gene-targeting efficiency of DT40 and NALM6 cells is linked to increased rates of HR-mediated DSB repair after exposure to ionizing radiation (IR). We analyzed IR-induced γ-H2AX foci as a marker for the total number of DSBs induced in a cell and RAD51 foci as a marker for the fraction of those DSBs undergoing repair by HR. We also evaluated RPA accretion on chromatin as evidence for ongoing DNA end resection, an important initial step for all pathways of DSB repair except c-NHEJ. We finally employed the DR-GFP reporter assay to evaluate DSB repair by HR in DT40 cells. Collectively, the results obtained, unexpectedly show that DT40 and NALM6 cells utilized HR for DSB repair at levels very similar to those of other somatic cells. These observations uncouple gene-targeting efficiency from HR contribution to DSB repair and suggest the function of additional mechanisms increasing gene-targeting efficiency. Indeed, our results show that analysis of the contribution of HR to DSB repair may not be used as a proxy for gene-targeting efficiency.
Collapse
Affiliation(s)
- Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| | - Katja Paul-Konietzko
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| | - Veronika Mladenova
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
32
|
de Nonneville A, Salas S, Bertucci F, Sobinoff AP, Adélaïde J, Guille A, Finetti P, Noble JR, Churikov D, Chaffanet M, Lavit E, Pickett HA, Bouvier C, Birnbaum D, Reddel RR, Géli V. TOP3A amplification and ATRX inactivation are mutually exclusive events in pediatric osteosarcomas using ALT. EMBO Mol Med 2022; 14:e15859. [PMID: 35920001 PMCID: PMC9549729 DOI: 10.15252/emmm.202215859] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
In some types of cancer, telomere length is maintained by the alternative lengthening of telomeres (ALT) mechanism. In many ALT cancers, the α-thalassemia/mental retardation syndrome X-linked (ATRX) gene is mutated leading to the conclusion that the ATRX complex represses ALT. Here, we report that most high-grade pediatric osteosarcomas maintain their telomeres by ALT, and that the majority of these ALT tumors are ATRX wild-type (wt) and instead carry an amplified 17p11.2 chromosomal region containing TOP3A. We found that TOP3A was overexpressed in the ALT-positive ATRX-wt tumors consistent with its amplification. We demonstrated the functional significance of these results by showing that TOP3A overexpression in ALT cancer cells countered ATRX-mediated ALT inhibition and that TOP3A knockdown disrupted the ALT phenotype in ATRX-wt cells. Moreover, we report that TOP3A is required for proper BLM localization and promotes ALT DNA synthesis in ALT cell lines. Collectively, our results identify TOP3A as a major ALT player and potential therapeutic target.
Collapse
Affiliation(s)
- Alexandre de Nonneville
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance,Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia,Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance,Department of Medical Oncology, CRCM, CNRS, INSERM, Institut Paoli‐CalmettesAix‐Marseille UnivMarseilleFrance
| | - Sébastien Salas
- Department of Medical OncologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - François Bertucci
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance,Department of Medical Oncology, CRCM, CNRS, INSERM, Institut Paoli‐CalmettesAix‐Marseille UnivMarseilleFrance
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - José Adélaïde
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Arnaud Guille
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Pascal Finetti
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Jane R Noble
- Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Dimitri Churikov
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance
| | - Max Chaffanet
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Elise Lavit
- Department of Medical OncologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Corinne Bouvier
- Department of PathologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Roger R Reddel
- Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance
| |
Collapse
|
33
|
Feng YL, Liu Q, Chen RD, Liu SC, Huang ZC, Liu KM, Yang XY, Xie AY. DNA nicks induce mutational signatures associated with BRCA1 deficiency. Nat Commun 2022; 13:4285. [PMID: 35879372 PMCID: PMC9314409 DOI: 10.1038/s41467-022-32011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Analysis of human cancer genome sequences has revealed specific mutational signatures associated with BRCA1-deficient tumors, but the underlying mechanisms remain poorly understood. Here, we show that one-ended DNA double strand breaks (DSBs) converted from CRISPR/Cas9-induced nicks by DNA replication, not two-ended DSBs, cause more characteristic chromosomal aberrations and micronuclei in Brca1-deficient cells than in wild-type cells. BRCA1 is required for efficient homologous recombination of these nick-converted DSBs and suppresses bias towards long tract gene conversion and tandem duplication (TD) mediated by two-round strand invasion in a replication strand asymmetry. However, aberrant repair of these nick-converted one-ended DSBs, not that of two-ended DSBs in Brca1-deficient cells, generates mutational signatures such as small indels with microhomology (MH) at the junctions, translocations and small MH-mediated TDs, resembling those in BRCA1-deficient tumors. These results suggest a major contribution of DNA nicks to mutational signatures associated with BRCA1 deficiency in cancer and the underlying mechanisms.
Collapse
Affiliation(s)
- Yi-Li Feng
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China. .,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China.
| | - Qian Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - Ruo-Dan Chen
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - Si-Cheng Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - Zhi-Cheng Huang
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - Kun-Ming Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - Xiao-Ying Yang
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - An-Yong Xie
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China. .,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China.
| |
Collapse
|
34
|
Abstract
The number of (TTAGGG)n repeats at the ends of chromosomes is highly variable between individual chromosomes, between different cells and between species. Progressive loss of telomere repeats limits the proliferation of pre-malignant human cells but also contributes to aging by inducing apoptosis and senescence in normal cells. Despite enormous progress in understanding distinct pathways that result in loss and gain of telomeric DNA in different cell types, many questions remain. Further studies are needed to delineate the role of damage to telomeric DNA, replication errors, chromatin structure, liquid-liquid phase transition, telomeric transcripts (TERRA) and secondary DNA structures such as guanine quadruplex structures, R-loops and T-loops in inducing gains and losses of telomere repeats in different cell types. Limitations of current telomere length measurements techniques and differences in telomere biology between species and different cell types complicate generalizations about the role of telomeres in aging and cancer. Here some of the factors regulating the telomere length in embryonic and adult cells in mammals are discussed from a mechanistic and evolutionary perspective.
Collapse
Affiliation(s)
- Peter Lansdorp
- Terry Fox Laboratory, British Columbia (BC) Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Peter Lansdorp,
| |
Collapse
|
35
|
Break-induced replication: unraveling each step. Trends Genet 2022; 38:752-765. [PMID: 35459559 DOI: 10.1016/j.tig.2022.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Break-induced replication (BIR) repairs one-ended double-strand DNA breaks through invasion into a homologous template followed by DNA synthesis. Different from S-phase replication, BIR copies the template DNA in a migrating displacement loop (D-loop) and results in conservative inheritance of newly synthesized DNA. This unusual mode of DNA synthesis makes BIR a source of various genetic instabilities like those associated with cancer in humans. This review focuses on recent progress in delineating the mechanism of Rad51-dependent BIR in budding yeast. In addition, we discuss new data that describe changes in BIR efficiency and fidelity on encountering replication obstacles as well as the implications of these findings for BIR-dependent processes such as telomere maintenance and the repair of collapsed replication forks.
Collapse
|
36
|
Nickoloff JA, Sharma N, Taylor L, Allen SJ, Hromas R. Nucleases and Co-Factors in DNA Replication Stress Responses. DNA 2022; 2:68-85. [PMID: 36203968 PMCID: PMC9534323 DOI: 10.3390/dna2010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA replication stress is a constant threat that cells must manage to proliferate and maintain genome integrity. DNA replication stress responses, a subset of the broader DNA damage response (DDR), operate when the DNA replication machinery (replisome) is blocked or replication forks collapse during S phase. There are many sources of replication stress, such as DNA lesions caused by endogenous and exogenous agents including commonly used cancer therapeutics, and difficult-to-replicate DNA sequences comprising fragile sites, G-quadraplex DNA, hairpins at trinucleotide repeats, and telomeres. Replication stress is also a consequence of conflicts between opposing transcription and replication, and oncogenic stress which dysregulates replication origin firing and fork progression. Cells initially respond to replication stress by protecting blocked replisomes, but if the offending problem (e.g., DNA damage) is not bypassed or resolved in a timely manner, forks may be cleaved by nucleases, inducing a DNA double-strand break (DSB) and providing a means to accurately restart stalled forks via homologous recombination. However, DSBs pose their own risks to genome stability if left unrepaired or misrepaired. Here we focus on replication stress response systems, comprising DDR signaling, fork protection, and fork processing by nucleases that promote fork repair and restart. Replication stress nucleases include MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, and FEN1. Replication stress factors are important in cancer etiology as suppressors of genome instability associated with oncogenic mutations, and as potential cancer therapy targets to enhance the efficacy of chemo- and radiotherapeutics.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Sage J. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
37
|
Identification of MAD2L1 as a Potential Biomarker in Hepatocellular Carcinoma via Comprehensive Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9868022. [PMID: 35132379 PMCID: PMC8817109 DOI: 10.1155/2022/9868022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is widely acknowledged as a malignant tumor with rapid progression, high recurrence rate, and poor prognosis. At present, there is a paucity of reliable biomarkers at the clinical level to guide the management of HCC and improve patient outcomes. Our research is aimed at assessing the prognostic value of MAD2L1 in HCC. Methods Four datasets, GSE121248, GSE101685, GSE85598, and GSE62232, were selected from the GEO database to analyze differentially expressed genes (DEGs) between HCC and normal liver tissues. After functional analysis, we constructed a protein-protein interaction network (PPI) for DEGs and identified core genes in this network with high connectivity with other genes. We assessed the relationship between core genes and the pathogenesis and prognosis of HCC. Finally, we explored the gene regulatory signaling mechanisms involved in HCC pathogenesis. Results 145 DEGs were screened from the intersection of the four GEO datasets. MAD2L1 was associated with most genes according to the PPI network and was selected as a candidate gene for further study. Survival analysis suggested that high MAD2L1 expression in HCC correlated with a worse prognosis. In addition, real-time quantitative PCR (RT-qPCR), western blot (WB), and immunohistochemistry (IHC) findings suggested that the expression of MAD2L1 was abnormally increased in HCC tissues and cells compared to paraneoplastic tissues and normal hepatocytes. Conclusion We found that high MAD2L1 expression in HCC was significantly associated with overall patient survival and clinical features. We also explored the potential biological properties of this gene.
Collapse
|
38
|
Nickoloff JA, Sharma N, Taylor L, Allen SJ, Hromas R. The Safe Path at the Fork: Ensuring Replication-Associated DNA Double-Strand Breaks are Repaired by Homologous Recombination. Front Genet 2021; 12:748033. [PMID: 34646312 PMCID: PMC8502867 DOI: 10.3389/fgene.2021.748033] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Cells must replicate and segregate their DNA to daughter cells accurately to maintain genome stability and prevent cancer. DNA replication is usually fast and accurate, with intrinsic (proofreading) and extrinsic (mismatch repair) error-correction systems. However, replication forks slow or stop when they encounter DNA lesions, natural pause sites, and difficult-to-replicate sequences, or when cells are treated with DNA polymerase inhibitors or hydroxyurea, which depletes nucleotide pools. These challenges are termed replication stress, to which cells respond by activating DNA damage response signaling pathways that delay cell cycle progression, stimulate repair and replication fork restart, or induce apoptosis. Stressed forks are managed by rescue from adjacent forks, repriming, translesion synthesis, template switching, and fork reversal which produces a single-ended double-strand break (seDSB). Stressed forks also collapse to seDSBs when they encounter single-strand nicks or are cleaved by structure-specific nucleases. Reversed and cleaved forks can be restarted by homologous recombination (HR), but seDSBs pose risks of mis-rejoining by non-homologous end-joining (NHEJ) to other DSBs, causing genome rearrangements. HR requires resection of broken ends to create 3' single-stranded DNA for RAD51 recombinase loading, and resected ends are refractory to repair by NHEJ. This Mini Review highlights mechanisms that help maintain genome stability by promoting resection of seDSBs and accurate fork restart by HR.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Sage J Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|