1
|
Wang Y, Dede M, Mohanty V, Dou J, Li Z, Chen K. A statistical approach for systematic identification of transition cells from scRNA-seq data. CELL REPORTS METHODS 2024; 4:100913. [PMID: 39644902 DOI: 10.1016/j.crmeth.2024.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/01/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Decoding cellular state transitions is crucial for understanding complex biological processes in development and disease. While recent advancements in single-cell RNA sequencing (scRNA-seq) offer insights into cellular trajectories, existing tools primarily study expressional rather than regulatory state shifts. We present CellTran, a statistical approach utilizing paired-gene expression correlations to detect transition cells from scRNA-seq data without explicitly resolving gene regulatory networks. Applying our approach to various contexts, including tissue regeneration, embryonic development, preinvasive lesions, and humoral responses post-vaccination, reveals transition cells and their distinct gene expression profiles. Our study sheds light on the underlying molecular mechanisms driving cellular state transitions, enhancing our ability to identify therapeutic targets for disease interventions.
Collapse
Affiliation(s)
- Yuanxin Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Soresi M, Giannitrapani L. Glucagon-like peptide 1 agonists are potentially useful drugs for treating metabolic dysfunction-associated steatotic liver disease. World J Gastroenterol 2024; 30:3541-3547. [PMID: 39193573 PMCID: PMC11346152 DOI: 10.3748/wjg.v30.i30.3541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/08/2024] Open
Abstract
In this editorial, we comment on Yin et al's recently published Letter to the editor. In particular, we focus on the potential use of glucagon-like peptide 1 receptor agonists (GLP-1RAs) alone, but even more so in combination therapy, as one of the most promising therapies in metabolic dysfunction-associated steatotic liver disease (MASLD), the new definition of an old condition, non-alcoholic fatty liver disease, which aims to better define the spectrum of steatotic pathology. It is well known that GLP-1RAs, having shown outstanding performance in fat loss, weight loss, and improvement of insulin resistance, could play a role in protecting the liver from progressive damage. Several clinical trials have shown that, among GLP-1RAs, semaglutide is a safe, well-studied therapeutic choice for MASLD patients; however, most studies demonstrate that, while semaglutide can reduce steatosis, including steatohepatitis histological signs (in terms of inflammatory cell infiltration and hepatocyte ballooning), it does not improve fibrosis. Combinations of therapies with different but complementary mechanisms of action are considered the best way to improve efficiency and slow disease progression due to the complex pathophysiology of the disease. In particular, GLP-1RAs associated with antifibrotic drug therapy, dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1RA or GLP-1 and glucagon RAs have promoted greater improvement in hepatic steatosis, liver biochemistry, and non-invasive fibrosis tests than monotherapy. Therefore, although to date there are no definitive indications from international drug agencies, there is the hope that soon the therapeutic lines in the most advanced phase of study will be able to provide a therapy for MASLD, one that will certainly include the use of GLP-1RAs as combination therapy.
Collapse
Affiliation(s)
- Maurizio Soresi
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo 90127, Italy
| | - Lydia Giannitrapani
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo 90127, Italy
| |
Collapse
|
3
|
Rukhlenko OS, Imoto H, Tambde A, McGillycuddy A, Junk P, Tuliakova A, Kolch W, Kholodenko BN. Cell State Transition Models Stratify Breast Cancer Cell Phenotypes and Reveal New Therapeutic Targets. Cancers (Basel) 2024; 16:2354. [PMID: 39001416 PMCID: PMC11240448 DOI: 10.3390/cancers16132354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Understanding signaling patterns of transformation and controlling cell phenotypes is a challenge of current biology. Here we applied a cell State Transition Assessment and Regulation (cSTAR) approach to a perturbation dataset of single cell phosphoproteomic patterns of multiple breast cancer (BC) and normal breast tissue-derived cell lines. Following a separation of luminal, basal, and normal cell states, we identified signaling nodes within core control networks, delineated causal connections, and determined the primary drivers underlying oncogenic transformation and transitions across distinct BC subtypes. Whereas cell lines within the same BC subtype have different mutational and expression profiles, the architecture of the core network was similar for all luminal BC cells, and mTOR was a main oncogenic driver. In contrast, core networks of basal BC were heterogeneous and segregated into roughly four major subclasses with distinct oncogenic and BC subtype drivers. Likewise, normal breast tissue cells were separated into two different subclasses. Based on the data and quantified network topologies, we derived mechanistic cSTAR models that serve as digital cell twins and allow the deliberate control of cell movements within a Waddington landscape across different cell states. These cSTAR models suggested strategies of normalizing phosphorylation networks of BC cell lines using small molecule inhibitors.
Collapse
Affiliation(s)
- Oleksii S Rukhlenko
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Hiroaki Imoto
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Ayush Tambde
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Stratford College, D06 T9V3 Dublin, Ireland
| | - Amy McGillycuddy
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Biological, Health and Sports Sciences, Technological University, D07 H6K8 Dublin, Ireland
| | - Philipp Junk
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Anna Tuliakova
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Pensotti A, Bizzarri M, Bertolaso M. The phenotypic reversion of cancer: Experimental evidences on cancer reversibility through epigenetic mechanisms (Review). Oncol Rep 2024; 51:48. [PMID: 38275101 PMCID: PMC10835663 DOI: 10.3892/or.2024.8707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Different experimental models reveal that malignant cancer cells can be induced to change their phenotype into a benign one. This phenotypic transformation, confirmed both in vitro and in vivo, currently is known as 'tumor reversion'. This evidence raises a radical question among current cancer models: Is cancer reversible? How do genetic and epigenetic alterations hierarchically relate? Understanding the mechanisms of 'tumor reversion' represents a key point in order to evolve the actual cancer models and develop new heuristic models that can possibly lead to drugs that target epigenetic mechanisms, for example epigenetic drugs. Even though evidence of tumor reversion dates back to the 1950s, this remains a completely new field of research recently re‑discovered thanks to the interest in cell reprogramming research, developmental biology and the increasing understanding of epigenetic mechanisms. In the current review, a comprehensive review of all the main experimental models on tumor reversion was presented.
Collapse
Affiliation(s)
- Andrea Pensotti
- Research Unit of Philosophy of Science and Human Development, University Campus Bio‑Medico of Rome, I‑00128 Rome, Italy
| | - Mariano Bizzarri
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University, I‑00185 Rome, Italy
| | - Marta Bertolaso
- Research Unit of Philosophy of Science and Human Development, University Campus Bio‑Medico of Rome, I‑00128 Rome, Italy
| |
Collapse
|
5
|
Chen D, Rukhlenko OS, Coon BG, Joshi D, Chakraborty R, Martin KA, Kholodenko BN, Schwartz MA, Simons M. VEGF counteracts shear stress-determined arterial fate specification during capillary remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576920. [PMID: 38328237 PMCID: PMC10849567 DOI: 10.1101/2024.01.23.576920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A key feature of arteriogenesis is capillary-to-arterial endothelial cell fate transition. Although a number of studies in the past two decades suggested this process is driven by VEGF activation of Notch signaling, how arteriogenesis is regulated remains poorly understood. Here we report that arterial specification is mediated by fluid shear stress (FSS) independent of VEGFR2 signaling and that a decline in VEGFR2 signaling is required for arteriogenesis to fully take place. VEGF does not induce arterial fate in capillary ECs and, instead, counteracts FSS-driven capillary-to-arterial cell fate transition. Mechanistically, FSS-driven arterial program involves both Notch-dependent and Notch-independent events. Sox17 is the key mediator of the FSS-induced arterial specification and a target of VEGF-FSS competition. These findings suggest a new paradigm of VEGF-FSS crosstalk coordinating angiogenesis, arteriogenesis and capillary maintenance.
Collapse
|
6
|
Deng H, Rukhlendo OS, Joshi D, Hu X, Junk P, Tuliakova A, Kholodenko BN, Schwartz MA. cSTAR analysis identifies endothelial cell cycle as a key regulator of flow-dependent artery remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563764. [PMID: 37961694 PMCID: PMC10634797 DOI: 10.1101/2023.10.24.563764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Fluid shear stress (FSS) from blood flow is sensed by vascular endothelial cells (ECs) to determine vessel stability, remodeling and susceptibility to atherosclerosis and other inflammatory diseases but the regulatory networks that govern these behaviors are only partially understood. We used cSTAR, a powerful new computational method, to define EC transcriptomic states under low shear stress (LSS) that triggers vessel inward remodeling, physiological shear stress (PSS) that stabilizes vessels, high shear stress (HSS) that triggers outward remodeling, and oscillatory shear stress (OSS) that confers disease susceptibility, all in comparison to cells under static conditions (STAT). We combined these results with the LINCS database where EC transcriptomic responses to drug treatments to define a preliminary regulatory network in which the cyclin-dependent kinases CDK1/2 play a central role in promoting vessel stability. Experimental analysis showed that PSS induced a strong late G1 cell cycle arrest in which CDK2 was activated. EC deletion of CDK2 in mice resulted in inward artery remodeling and both pulmonary and systemic hypertension. These results validate use of cSTAR to determine EC state and in vivo vessel behavior, reveal unexpected features of EC phenotype under different FSS conditions, and identify CDK2 as a key element within the EC regulatory network that governs artery remodeling.
Collapse
|