1
|
Kumar S, Lakin MR. A geometric framework for reaction enumeration in computational nucleic acid devices. J R Soc Interface 2023; 20:20230259. [PMID: 37963554 PMCID: PMC10645505 DOI: 10.1098/rsif.2023.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Cascades of DNA strand displacement reactions enable the design of potentially large circuits with complex behaviour. Computational modelling of such systems is desirable to enable rapid design and analysis. In previous work, the expressive power of graph theory was used to enumerate reactions implementing strand displacement across a wide range of complex structures. However, coping with the rich variety of possible graph-based structures required enumeration rules with complicated side-conditions. This paper presents an alternative approach to tackle the problem of enumerating reactions at domain level involving complex structures by integrating with a geometric constraint solving algorithm. The rule sets from previous work are simplified by replacing side-conditions with a general check on the geometric plausibility of structures generated by the enumeration algorithm. This produces a highly general geometric framework for reaction enumeration. Here, we instantiate this framework to solve geometric constraints by a structure sampling approach in which we randomly generate sets of coordinates and check whether they satisfy all the constraints. We demonstrate this system by applying it to examples from the literature where molecular geometry plays an important role, including DNA hairpin and remote toehold reactions. This work therefore enables integration of reaction enumeration and structural modelling.
Collapse
Affiliation(s)
- Sarika Kumar
- Department of Computer Science, University of New Mexico, Albuquerque, NM, USA
| | - Matthew R. Lakin
- Department of Computer Science, University of New Mexico, Albuquerque, NM, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
2
|
Sharma C, Samanta A, Schmidt RS, Walther A. DNA-Based Signaling Networks for Transient Colloidal Co-Assemblies. J Am Chem Soc 2023; 145:17819-17830. [PMID: 37543962 DOI: 10.1021/jacs.3c04807] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Programmable chemical circuits inspired by signaling networks in living cells are a promising approach for the development of adaptive and autonomous self-assembling molecular systems and material functions. Progress has been made at the molecular level, but connecting molecular control circuits to self-assembling larger elements such as colloids that enable real-space studies and access to functional materials is sparse and can suffer from kinetic traps, flocculation, or difficult system integration protocols. Herein, we report a toehold-mediated DNA strand displacement reaction network capable of autonomously directing two different microgels into transient and self-regulating co-assemblies. The microgels are functionalized with DNA and become elemental components of the network. The flexibility of the circuit design allows the installation of delay phases or accelerators by chaining additional circuit modules upstream or downstream of the core circuit. The design provides an adaptable and robust route to regulate other building blocks for advanced biomimetic functions.
Collapse
Affiliation(s)
- Charu Sharma
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ricarda Sophia Schmidt
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
3
|
Wang Y, Wang L, Hu W, Qian M, Dong Y. Design and Simulation of an Autonomous Molecular Mechanism Using Spatially Localized DNA Computation. Interdiscip Sci 2023; 15:1-14. [PMID: 36763314 DOI: 10.1007/s12539-023-00551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 02/11/2023]
Abstract
As a well-established technique, DNA synthesis offers interesting possibilities for designing multifunctional nanodevices. The micro-processing system of modern semiconductor circuits is dependent on strategies organized on silicon chips to achieve the speedy transmission of substances or information. Similarly, spatially localized structures allow for fixed DNA molecules in close proximity to each other during the synthesis of molecular circuits, thus providing a different strategy that of opening up a remarkable new area of inquiry for researchers. Herein, the Visual DSD (DNA strand displacement) modeling language was used to design and analyze the spatially organized DNA reaction network. The execution rules depend on the hybridization reaction caused by directional complementary nucleotide sequences. A series of DNA strand displacement calculations were organized on the locally coded travel track, and autonomous movement and addressing operations are gradually realized. The DNA nanodevice operates in this manner follows the embedded "molecular program", which improves the reusability and scalability of the same sequence domain in different contexts. Through the communication between various building blocks, the DNA device-carrying the target molecule moves in a controlled manner along the programmed track. In this way, a variety of molecular functional group transport and specific partition storage can be realized. The simulation results of the visual DSD tool provide qualitative and quantitative proof for the operation of the system.
Collapse
Affiliation(s)
- Yue Wang
- School of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.,Department of Information Engineering, Taiyuan City Vocational and Technical College, Taiyuan, 030027, Shanxi, China
| | - Luhui Wang
- School of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Wenxiao Hu
- School of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Mengyao Qian
- School of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yafei Dong
- School of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
4
|
Zarubiieva I, Spaccasassi C, Kulkarni V, Phillips A. Automated Leak Analysis of Nucleic Acid Circuits. ACS Synth Biol 2022; 11:1931-1948. [PMID: 35544754 DOI: 10.1021/acssynbio.2c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleic acids are a powerful engineering material that can be used to implement a broad range of computational circuits at the nanoscale, with potential applications in high-precision biosensing, diagnostics, and therapeutics. However, nucleic acid circuits are prone to leaks, which result from unintended displacement interactions between nucleic acid strands. Such leaks can grow combinatorially with circuit size, are challenging to mitigate, and can significantly compromise circuit behavior. While several techniques have been proposed to partially mitigate leaks, computational methods for designing new leak mitigation strategies and comparing their effectiveness on circuit behavior are limited. Here we present a general method for the automated leak analysis of nucleic acid circuits, referred to as DSD Leaks. Our method extends the logic programming functionality of the Visual DSD language, developed for the design and analysis of nucleic acid circuits, with predicates for leak generation, a leak reaction enumeration algorithm, and predicates to exclude low probability leak reactions. We use our method to identify the critical leak reactions affecting the performance of control circuits, and to analyze leak mitigation strategies by automatically generating leak reactions. Finally, we design new control circuits with substantially reduced leakage including a sophisticated proportional-integral controller circuit, which can in turn serve as building blocks for future circuits. By integrating our method within an open-source nucleic acid circuit design tool, we enable the leak analysis of a broad range of circuits, as an important step toward facilitating robust and scalable nucleic acid circuit design.
Collapse
|
5
|
Lakin MR, Phillips A. Domain-Specific Programming Languages for Computational Nucleic Acid Systems. ACS Synth Biol 2020; 9:1499-1513. [PMID: 32589838 DOI: 10.1021/acssynbio.0c00050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The construction of models of system behavior is of great importance throughout science and engineering. In bioengineering and bionanotechnology, these often take the form of dynamic models that specify the evolution of different species over time. To ensure that scientific observations and conclusions are consistent and that systems can be reliably engineered on the basis of model predictions, it is important that models of biomolecular systems can be constructed in a reliable, principled, and efficient manner. This review focuses on efforts to address this need by using domain-specific programming languages as the basis for custom design tools for researchers working on computational nucleic acid devices, where a domain-specific language is simply a programming language tailored to a particular application domain. The underlying thesis of our review is that there is a continuum of practical implementation strategies for computational nucleic acid systems, which can all benefit from appropriate domain-specific languages and software design tools. We emphasize the need for specialized yet flexible tools that can be realized using domain-specific languages that compile to more general-purpose representations.
Collapse
Affiliation(s)
- Matthew R. Lakin
- Department of Computer Science, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemical & Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | | |
Collapse
|
6
|
Badelt S, Grun C, Sarma KV, Wolfe B, Shin SW, Winfree E. A domain-level DNA strand displacement reaction enumerator allowing arbitrary non-pseudoknotted secondary structures. J R Soc Interface 2020; 17:20190866. [PMID: 32486951 PMCID: PMC7328391 DOI: 10.1098/rsif.2019.0866] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
Information technologies enable programmers and engineers to design and synthesize systems of startling complexity that nonetheless behave as intended. This mastery of complexity is made possible by a hierarchy of formal abstractions that span from high-level programming languages down to low-level implementation specifications, with rigorous connections between the levels. DNA nanotechnology presents us with a new molecular information technology whose potential has not yet been fully unlocked in this way. Developing an effective hierarchy of abstractions may be critical for increasing the complexity of programmable DNA systems. Here, we build on prior practice to provide a new formalization of 'domain-level' representations of DNA strand displacement systems that has a natural connection to nucleic acid biophysics while still being suitable for formal analysis. Enumeration of unimolecular and bimolecular reactions provides a semantics for programmable molecular interactions, with kinetics given by an approximate biophysical model. Reaction condensation provides a tractable simplification of the detailed reactions that respects overall kinetic properties. The applicability and accuracy of the model is evaluated across a wide range of engineered DNA strand displacement systems. Thus, our work can serve as an interface between lower-level DNA models that operate at the nucleotide sequence level, and high-level chemical reaction network models that operate at the level of interactions between abstract species.
Collapse
Affiliation(s)
- Stefan Badelt
- California Institute of Technology, Pasadena, CA, USA
| | - Casey Grun
- Wyss Institute, Harvard University, Boston, MA, USA
| | | | - Brian Wolfe
- California Institute of Technology, Pasadena, CA, USA
| | | | - Erik Winfree
- California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
7
|
Thabit QQ, Al-Saffar AA. DNA-strand molecular beacon optical processor. Heliyon 2019; 5:e02389. [PMID: 31687539 PMCID: PMC6819820 DOI: 10.1016/j.heliyon.2019.e02389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/13/2019] [Accepted: 08/27/2019] [Indexed: 11/30/2022] Open
Abstract
Due to the characteristics of the newly developed DNA computing, many researchers are interested in this specialty. One advantage of DNA " Deoxyribonucleic acid" is that it has ability to resolve a Boolean circuit with various types of gates at the same time in a single level. Most of the prior models suffered from the limitations that each level of the circuit requests the gates to be of some kind. The model proposed in this work increases parallelism and reduces human intervention to a tremendous extent. When level-wise simulation is executed, the simulation for each model shows the decrease in the number of nitrogen bases used, which leads to the processing of the largest number of data with the ability to increase the length of a word, in addition to the adoption of the parallel principle of implementation. The model is designed on a mechanism which includes adder and multiplier.
Collapse
Affiliation(s)
- Qabeela Q Thabit
- Department of Electrical Engineering, University of Basrah, Basrah, Iraq
| | - Alaa A Al-Saffar
- Department of Electrical Power Engineering Techniques, Southern Technical University, Basrah, Iraq
| |
Collapse
|
8
|
Spaccasassi C, Lakin MR, Phillips A. A Logic Programming Language for Computational Nucleic Acid Devices. ACS Synth Biol 2019; 8:1530-1547. [PMID: 30372611 DOI: 10.1021/acssynbio.8b00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Computational nucleic acid devices show great potential for enabling a broad range of biotechnology applications, including smart probes for molecular biology research, in vitro assembly of complex compounds, high-precision in vitro disease diagnosis and, ultimately, computational theranostics inside living cells. This diversity of applications is supported by a range of implementation strategies, including nucleic acid strand displacement, localization to substrates, and the use of enzymes with polymerase, nickase, and exonuclease functionality. However, existing computational design tools are unable to account for these strategies in a unified manner. This paper presents a logic programming language that allows a broad range of computational nucleic acid systems to be designed and analyzed. The language extends standard logic programming with a novel equational theory to express nucleic acid molecular motifs. It automatically identifies matching motifs present in the full system, in order to apply a specified transformation expressed as a logical rule. The language supports the definition of logic predicates, which provide constraints that need to be satisfied in order for a given rule to be applied. The language is sufficiently expressive to encode the semantics of nucleic strand displacement systems with complex topologies, together with computation performed by a broad range of enzymes, and is readily extensible to new implementation strategies. Our approach lays the foundation for a unifying framework for the design of computational nucleic acid devices.
Collapse
Affiliation(s)
| | - Matthew R. Lakin
- Department of Computer Science, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | | |
Collapse
|
9
|
Berleant J, Berlind C, Badelt S, Dannenberg F, Schaeffer J, Winfree E. Automated sequence-level analysis of kinetics and thermodynamics for domain-level DNA strand-displacement systems. J R Soc Interface 2018; 15:20180107. [PMID: 30958232 PMCID: PMC6303802 DOI: 10.1098/rsif.2018.0107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022] Open
Abstract
As an engineering material, DNA is well suited for the construction of biochemical circuits and systems, because it is simple enough that its interactions can be rationally designed using Watson-Crick base pairing rules, yet the design space is remarkably rich. When designing DNA systems, this simplicity permits using functional sections of each strand, called domains, without considering particular nucleotide sequences. However, the actual sequences used may have interactions not predicted at the domain-level abstraction, and new rigorous analysis techniques are needed to determine the extent to which the chosen sequences conform to the system's domain-level description. We have developed a computational method for verifying sequence-level systems by identifying discrepancies between the domain-level and sequence-level behaviour. This method takes a DNA system, as specified using the domain-level tool Peppercorn, and analyses data from the stochastic sequence-level simulator Multistrand and sequence-level thermodynamic analysis tool NUPACK to estimate important aspects of the system, such as reaction rate constants and secondary structure formation. These techniques, implemented as the Python package KinDA, will allow researchers to predict the kinetic and thermodynamic behaviour of domain-level systems after sequence assignment, as well as to detect violations of the intended behaviour.
Collapse
Affiliation(s)
| | | | | | | | | | - Erik Winfree
- California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|