1
|
Hernández-Hernández V, Marchand OC, Kiss A, Boudaoud A. A mechanohydraulic model supports a role for plasmodesmata in cotton fiber elongation. PNAS NEXUS 2024; 3:pgae256. [PMID: 39010940 PMCID: PMC11249074 DOI: 10.1093/pnasnexus/pgae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024]
Abstract
Plant cell growth depends on turgor pressure, the cell hydrodynamic pressure, which drives expansion of the extracellular matrix (the cell wall). Turgor pressure regulation depends on several physical, chemical, and biological factors, including vacuolar invertases, which modulate osmotic pressure of the cell, aquaporins, which determine the permeability of the plasma membrane to water, cell wall remodeling factors, which determine cell wall extensibility (inverse of effective viscosity), and plasmodesmata, which are membrane-lined channels that allow free movement of water and solutes between cytoplasms of neighboring cells, like gap junctions in animals. Plasmodesmata permeability varies during plant development and experimental studies have correlated changes in the permeability of plasmodesmal channels to turgor pressure variations. Here, we study the role of plasmodesmal permeability in cotton fiber growth, a type of cell that increases in length by at least three orders of magnitude in a few weeks. We incorporated plasmodesma-dependent movement of water and solutes into a classical model of plant cell expansion. We performed a sensitivity analysis to changes in values of model parameters and found that plasmodesmal permeability is among the most important factors for building up turgor pressure and expanding cotton fibers. Moreover, we found that nonmonotonic behaviors of turgor pressure that have been reported previously in cotton fibers cannot be recovered without accounting for dynamic changes of the parameters used in the model. Altogether, our results suggest an important role for plasmodesmal permeability in the regulation of turgor pressure.
Collapse
Affiliation(s)
- Valeria Hernández-Hernández
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, INRIA, Lyon F-69342, France
| | - Olivier C Marchand
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, INRIA, Lyon F-69342, France
- LadHyX, NRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau F- 91120, France
| | - Annamaria Kiss
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, INRIA, Lyon F-69342, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, INRIA, Lyon F-69342, France
- LadHyX, NRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau F- 91120, France
| |
Collapse
|
2
|
Xu J, Du H, Shi H, Song J, Yu J, Zhou Y. Protein O-glycosylation regulates diverse developmental and defense processes in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6119-6130. [PMID: 37220091 DOI: 10.1093/jxb/erad187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Post-translational modifications affect protein functions and play key roles in controlling biological processes. Plants have unique types of O-glycosylation that are different from those of animals and prokaryotes, and they play roles in modulating the functions of secretory proteins and nucleocytoplasmic proteins by regulating transcription and mediating localization and degradation. O-glycosylation is complex because of the dozens of different O-glycan types, the widespread existence of hydroxyproline (Hyp), serine (Ser), and threonine (Thr) residues in proteins attached by O-glycans, and the variable modes of linkages connecting the sugars. O-glycosylation specifically affects development and environmental acclimatization by affecting diverse physiological processes. This review describes recent studies on the detection and functioning of protein O-glycosylation in plants, and provides a framework for the O-glycosylation network that underlies plant development and resistance.
Collapse
Affiliation(s)
- Jin Xu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Hongyu Du
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Huanran Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Jianing Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
- Hainan Institute, Zhejiang University, Sanya, 572025, P.R. China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, P.R. China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
- Hainan Institute, Zhejiang University, Sanya, 572025, P.R. China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, P.R. China
| |
Collapse
|
3
|
Jin S, Han Z, Hu Y, Si Z, Dai F, He L, Cheng Y, Li Y, Zhao T, Fang L, Zhang T. Structural variation (SV)-based pan-genome and GWAS reveal the impacts of SVs on the speciation and diversification of allotetraploid cottons. MOLECULAR PLANT 2023; 16:678-693. [PMID: 36760124 DOI: 10.1016/j.molp.2023.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/22/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Structural variations (SVs) have long been described as being involved in the origin, adaption, and domestication of species. However, the underlying genetic and genomic mechanisms are poorly understood. Here, we report a high-quality genome assembly of Gossypium barbadense acc. Tanguis, a landrace that is closely related to formation of extra-long-staple (ELS) cultivated cotton. An SV-based pan-genome (Pan-SV) was then constructed using a total of 182 593 non-redundant SVs, including 2236 inversions, 97 398 insertions, and 82 959 deletions from 11 assembled genomes of allopolyploid cotton. The utility of this Pan-SV was then demonstrated through population structure analysis and genome-wide association studies (GWASs). Using segregation mapping populations produced through crossing ELS cotton and the landrace along with an SV-based GWAS, certain SVs responsible for speciation, domestication, and improvement in tetraploid cottons were identified. Importantly, some of the SVs presently identified as associated with the yield and fiber quality improvement had not been identified in previous SNP-based GWAS. In particular, a 9-bp insertion or deletion was found to associate with elimination of the interspecific reproductive isolation between Gossypium hirsutum and G. barbadense. Collectively, this study provides new insights into genome-wide, gene-scale SVs linked to important agronomic traits in a major crop species and highlights the importance of SVs during the speciation, domestication, and improvement of cultivated crop species.
Collapse
Affiliation(s)
- Shangkun Jin
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zegang Han
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yan Hu
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhanfeng Si
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fan Dai
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lu He
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yu Cheng
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiqian Li
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ting Zhao
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lei Fang
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Tianzhen Zhang
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
4
|
Petersen BL, MacAlister CA, Ulvskov P. Plant Protein O-Arabinosylation. FRONTIERS IN PLANT SCIENCE 2021; 12:645219. [PMID: 33815452 PMCID: PMC8012813 DOI: 10.3389/fpls.2021.645219] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 05/26/2023]
Abstract
A wide range of proteins with diverse functions in development, defense, and stress responses are O-arabinosylated at hydroxyprolines (Hyps) within distinct amino acid motifs of continuous stretches of Hyps, as found in the structural cell wall extensins, or at non-continuous Hyps as, for example, found in small peptide hormones and a variety of plasma membrane proteins involved in signaling. Plant O-glycosylation relies on hydroxylation of Prolines to Hyps in the protein backbone, mediated by prolyl-4-hydroxylase (P4H) which is followed by O-glycosylation of the Hyp C4-OH group by either galactosyltransferases (GalTs) or arabinofuranosyltranferases (ArafTs) yielding either Hyp-galactosylation or Hyp-arabinosylation. A subset of the P4H enzymes with putative preference to hydroxylation of continuous prolines and presumably all ArafT enzymes needed for synthesis of the substituted arabinose chains of one to four arabinose units, have been identified and functionally characterized. Truncated root-hair phenotype is one common denominator of mutants of Hyp formation and Hyp-arabinosylation glycogenes, which act on diverse groups of O-glycosylated proteins, e.g., the small peptide hormones and cell wall extensins. Dissection of different substrate derived effects may not be regularly feasible and thus complicate translation from genotype to phenotype. Recently, lack of proper arabinosylation on arabinosylated proteins has been shown to influence their transport/fate in the secretory pathway, hinting to an additional layer of functionality of O-arabinosylation. Here, we provide an update on the prevalence and types of O-arabinosylated proteins and the enzymatic machinery responsible for their modifications.
Collapse
Affiliation(s)
- Bent Larsen Petersen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Cora A. MacAlister
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Strasser R, Seifert G, Doblin MS, Johnson KL, Ruprecht C, Pfrengle F, Bacic A, Estevez JM. Cracking the "Sugar Code": A Snapshot of N- and O-Glycosylation Pathways and Functions in Plants Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:640919. [PMID: 33679857 PMCID: PMC7933510 DOI: 10.3389/fpls.2021.640919] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Glycosylation is a fundamental co-translational and/or post-translational modification process where an attachment of sugars onto either proteins or lipids can alter their biological function, subcellular location and modulate the development and physiology of an organism. Glycosylation is not a template driven process and as such produces a vastly larger array of glycan structures through combinatorial use of enzymes and of repeated common scaffolds and as a consequence it provides a huge expansion of both the proteome and lipidome. While the essential role of N- and O-glycan modifications on mammalian glycoproteins is already well documented, we are just starting to decode their biological functions in plants. Although significant advances have been made in plant glycobiology in the last decades, there are still key challenges impeding progress in the field and, as such, holistic modern high throughput approaches may help to address these conceptual gaps. In this snapshot, we present an update of the most common O- and N-glycan structures present on plant glycoproteins as well as (1) the plant glycosyltransferases (GTs) and glycosyl hydrolases (GHs) responsible for their biosynthesis; (2) a summary of microorganism-derived GHs characterized to cleave specific glycosidic linkages; (3) a summary of the available tools ranging from monoclonal antibodies (mAbs), lectins to chemical probes for the detection of specific sugar moieties within these complex macromolecules; (4) selected examples of N- and O-glycoproteins as well as in their related GTs to illustrate the complexity on their mode of action in plant cell growth and stress responses processes, and finally (5) we present the carbohydrate microarray approach that could revolutionize the way in which unknown plant GTs and GHs are identified and their specificities characterized.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg Seifert
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Monika S. Doblin
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Colin Ruprecht
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Fabian Pfrengle
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - José M. Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
6
|
Niu T, Wang X, Wu C, Sun D, Zhang X, Chen Z, Fang L. Chemical Modification of Cotton Fabrics by a Bifunctional Cationic Polymer for Salt-Free Reactive Dyeing. ACS OMEGA 2020; 5:15409-15416. [PMID: 32637815 PMCID: PMC7331042 DOI: 10.1021/acsomega.0c01530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/02/2020] [Indexed: 06/01/2023]
Abstract
Cotton modification exhibited great potential in the fabric dyeing industry. A bifunctional cationic polymer with a moderate cationic degree and low molecular weight was achieved via free radical polymerization between dimethyl diallyl ammonium chloride and allyl glycidyl ether. Then, it was further utilized for the modification of cotton fabrics. The formation of the cationic polymer was identified using Fourier transform infrared and nuclear magnetic resonance spectroscopies. The structure and properties of both treated and untreated cotton were analyzed by X-ray photoelectron spectroscopy and scanning electron microscopy. The modified cotton fabrics could be salt-free dyed with reactive dyes at low temperatures. While obtaining satisfactory color fastness and leveling properties, the dyeability of the modified cotton was improved significantly compared with the conventional dyeing of native cotton. Besides, the prepared cationic polymer has good flocculating properties to avoid secondary pollution, suggesting high potential for achieving an economical and eco-friendly dyeing process.
Collapse
Affiliation(s)
- Tianjie Niu
- School
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, China
| | - Xuemei Wang
- School
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, China
| | - Chaohui Wu
- Shandong
Chonglong Clothing Co., Ltd., Qingdao 266071, China
| | - Deshuai Sun
- School
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, China
| | - Xiaodong Zhang
- School
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, China
| | - Zhaojun Chen
- School
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, China
| | - Long Fang
- School
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, China
| |
Collapse
|
7
|
Mnich E, Bjarnholt N, Eudes A, Harholt J, Holland C, Jørgensen B, Larsen FH, Liu M, Manat R, Meyer AS, Mikkelsen JD, Motawia MS, Muschiol J, Møller BL, Møller SR, Perzon A, Petersen BL, Ravn JL, Ulvskov P. Phenolic cross-links: building and de-constructing the plant cell wall. Nat Prod Rep 2020; 37:919-961. [PMID: 31971193 DOI: 10.1039/c9np00028c] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Covering: Up to 2019Phenolic cross-links and phenolic inter-unit linkages result from the oxidative coupling of two hydroxycinnamates or two molecules of tyrosine. Free dimers of hydroxycinnamates, lignans, play important roles in plant defence. Cross-linking of bound phenolics in the plant cell wall affects cell expansion, wall strength, digestibility, degradability, and pathogen resistance. Cross-links mediated by phenolic substituents are particularly important as they confer strength to the wall via the formation of new covalent bonds, and by excluding water from it. Four biopolymer classes are known to be involved in the formation of phenolic cross-links: lignins, extensins, glucuronoarabinoxylans, and side-chains of rhamnogalacturonan-I. Lignins and extensins are ubiquitous in streptophytes whereas aromatic substituents on xylan and pectic side-chains are commonly assumed to be particular features of Poales sensu lato and core Caryophyllales, respectively. Cross-linking of phenolic moieties proceeds via radical formation, is catalyzed by peroxidases and laccases, and involves monolignols, tyrosine in extensins, and ferulate esters on xylan and pectin. Ferulate substituents, on xylan in particular, are thought to be nucleation points for lignin polymerization and are, therefore, of paramount importance to wall architecture in grasses and for the development of technology for wall disassembly, e.g. for the use of grass biomass for production of 2nd generation biofuels. This review summarizes current knowledge on the intra- and extracellular acylation of polysaccharides, and inter- and intra-molecular cross-linking of different constituents. Enzyme mediated lignan in vitro synthesis for pharmaceutical uses are covered as are industrial exploitation of mutant and transgenic approaches to control cell wall cross-linking.
Collapse
Affiliation(s)
- Ewelina Mnich
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|