1
|
Hellmann MJ, Gillet D, Trombotto S, Raetz S, Moerschbacher BM, Cord-Landwehr S. Heterogeneously deacetylated chitosans possess an unexpected regular pattern favoring acetylation at every third position. Nat Commun 2024; 15:6695. [PMID: 39107282 PMCID: PMC11303684 DOI: 10.1038/s41467-024-50857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
Chitosans are promising biopolymers for diverse applications, with material properties and bioactivities depending i.a. on their pattern of acetylation (PA). Commercial chitosans are typically produced by heterogeneous deacetylation of chitin, but whether this process yields chitosans with a random or block-wise PA has been debated for decades. Using a combination of recently developed in vitro assays and in silico modeling surprisingly revealed that both hypotheses are wrong; instead, we found a more regular PA in heterogeneously deacetylated chitosans, with acetylated units overrepresented at every third position in the polymer chain. Compared to random-PA chitosans produced by homogeneous deacetylation of chitin or chemical N-acetylation of polyglucosamine, this regular PA increases the elicitation activity in plants, and generates different product profiles and distributions after enzymatic and chemical cleavage. A regular PA may be beneficial for some applications but detrimental for others, stressing the relevance of the production process for product development.
Collapse
Affiliation(s)
- Margareta J Hellmann
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany
| | - Dominique Gillet
- Gillet Chitosan SAS, La Ville Es Comte, 22350, Plumaudan, France
| | - Stéphane Trombotto
- Ingénierie des Matériaux Polymères (IMP), UMR 5223, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Université Jean Monnet Saint-Etienne, F-69622, Villeurbanne, France
| | - Sonja Raetz
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany.
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany
| |
Collapse
|
2
|
Licona-Juárez KC, Bezerra AVS, Oliveira ITC, Massingue CD, Medina HR, Rangel DEN. Congo red induces trans-priming to UV-B radiation in Metarhizium robertsii. Fungal Biol 2023; 127:1544-1550. [PMID: 38097328 DOI: 10.1016/j.funbio.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 12/18/2023]
Abstract
Metarhizium spp. is used as a biocontrol agent but is limited because of low tolerance to abiotic stress. Metarhizium robertsii is an excellent study model of fungal pathogenesis in insects, and its tolerance to different stress conditions has been extensively investigated. Priming is the time-limited pre-exposure of an organism to specific stress conditions that increases adaptive response to subsequent exposures. Congo red is a water-soluble azo dye extensively used in stress assays in fungi. It induces morphological changes and weakens the cell wall at sublethal concentrations. Therefore, this chemical agent has been proposed as a stressor to induce priming against other stress conditions in entomopathogenic fungi. This study aimed to evaluate the capacity of Congo red to induce priming in M. robertsii. Conidia were grown on potato dextrose agar with or without Congo red.The tolerance of conidia produced from mycelia grown in these three conditions was evaluated against stress conditions, including osmotic, oxidative, heat, and UV-B radiation. Conidia produced on medium supplemented with Congo red were significantly more tolerant to UV-B radiation but not to the other stress conditions assayed. Our results suggest that Congo red confers trans-priming to UV-B radiation but not for heat, oxidative, or osmotic stress.
Collapse
Affiliation(s)
- Karla Cecilia Licona-Juárez
- Universidade Brasil, São Paulo, SP, 08230-030, Brazil; Laboratorio de Biología Molecular, Tecnológico Nacional de Mexico, A. García Cubas 600, Celaya, Guanajuato, 38010, Mexico
| | | | | | | | - Humberto R Medina
- Laboratorio de Biología Molecular, Tecnológico Nacional de Mexico, A. García Cubas 600, Celaya, Guanajuato, 38010, Mexico
| | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná (UTFPR), Dois Vizinhos, PR, 85660-000, Brazil.
| |
Collapse
|
3
|
Csillag K, Emri T, Rangel DEN, Pócsi I. pH-dependent effect of Congo Red on the growth of Aspergillus nidulans and Aspergillus niger. Fungal Biol 2023; 127:1180-1186. [PMID: 37495307 DOI: 10.1016/j.funbio.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022]
Abstract
The azo dye Congo Red (CR) is frequently used as an agent to elicit cell wall integrity stress in fungi. This highly toxic aromatic, heterocyclic compound contains two azo bonds as chromophore, which are responsible for protonation under acidic conditions, leading to changes in the molecular structure of the dye and the color of the solution. The investigation of how CR affects the growth of Aspergillus nidulans and Aspergillus niger on surface cultures provided us with evidence about its pH-dependent toxicity. Reducing the starting pH of the media from 7 to 3 decreased both the toxicity of CR and the dose-dependence of its toxicity substantially. These changes can be explained by the pH-dependent structural changes of CR and its precipitation at low pH. The pH also depended on the fungi; they could induce a decrease or even an increase, which could be important in the loss of dose-dependence. Our experiments led to the conclusion that in studies to evaluate the antifungal effect of CR, properly buffered solutions with pH values adjusted to above 5 are highly recommended to achieve a well-detectable and dose-dependent antifungal effect. However, for decolorization of CR solutions, lower pH is suggested where the decreased toxicity and solubility of CR could help this process.
Collapse
Affiliation(s)
- Kinga Csillag
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary.
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary.
| | | | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
4
|
Lyu J, Torchia C, Post H, Moran Torres JP, Altelaar AFM, de Cock H, Wösten HAB. The α-(1,3)-glucan synthase gene agsE impacts the secretome of Aspergillus niger. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01853-w. [PMID: 37316742 PMCID: PMC10371888 DOI: 10.1007/s10482-023-01853-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Aspergillus niger is widely used as a cell factory for the industrial production of enzymes. Previously, it was shown that deletion of α-1-3 glucan synthase genes results in smaller micro-colonies in liquid cultures of Aspergillus nidulans. Also, it has been shown that small wild-type Aspergillus niger micro-colonies secrete more protein than large mirco-colonies. We here assessed whether deletion of the agsC or agsE α-1-3 glucan synthase genes results in smaller A. niger micro-colonies and whether this is accompanied by a change in protein secretion. Biomass formation was not affected in the deletion strains but pH of the culture medium had changed from 5.2 in the case of the wild-type to 4.6 and 6.4 for ΔagsC and ΔagsE, respectively. The diameter of the ΔagsC micro-colonies was not affected in liquid cultures. In contrast, diameter of the ΔagsE micro-colonies was reduced from 3304 ± 338 µm to 1229 ± 113 µm. Moreover, the ΔagsE secretome was affected with 54 and 36 unique proteins with a predicted signal peptide in the culture medium of MA234.1 and the ΔagsE, respectively. Results show that these strains have complementary cellulase activity and thus may have complementary activity on plant biomass degradation. Together, α-1-3 glucan synthesis (in)directly impacts protein secretion in A. niger.
Collapse
Affiliation(s)
- Jun Lyu
- Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Costanza Torchia
- Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | | | - Juan P Moran Torres
- Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Hans de Cock
- Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Han A B Wösten
- Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Biocidal activity of ZnO NPs against pathogens and antioxidant activity - a greener approach by Citrus hystrix leaf extract as bio-reductant. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Aghbashlo M, Amiri H, Moosavi Basri SM, Rastegari H, Lam SS, Pan J, Gupta VK, Tabatabaei M. Tuning chitosan’s chemical structure for enhanced biological functions. Trends Biotechnol 2022; 41:785-797. [PMID: 36535818 DOI: 10.1016/j.tibtech.2022.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Chitosan, an amino polysaccharide mostly derived from crustaceans, has been recently highlighted for its biological activities that depend on its molecular weight (MW), degree of deacetylation (DD), and acetylation pattern (AP). More importantly, for some advanced biomaterials, the homogeneity of the chitosan structure is an important factor in determining its biological activity. Here we review emerging enzymes and cell factories, respectively, for in vitro and in vivo preparation of chitosan oligosaccharides (COSs), focusing on advances in the analysis of the AP and structural modification of chitosan to tune its functions. By 'mapping' current knowledge on chitosan's in vitro and in vivo activity with its MW and AP, this work could pave the way for future studies in the field.
Collapse
Affiliation(s)
- Mortaza Aghbashlo
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Hajar Rastegari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
7
|
Patel P, Free SJ. Characterization of Neurospora crassa GH16, GH17, and GH72 gene families of cell wall crosslinking enzymes. Cell Surf 2022; 8:100073. [PMID: 35079668 PMCID: PMC8777122 DOI: 10.1016/j.tcsw.2022.100073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/18/2022] Open
Abstract
GH16 chitin transferases, GH17 β-1,3-glucan transferases, and GH72 β-1,3-glucan/lichenin transferases are important fungal cell wall crosslinking enzymes. The Neurospora crassa genome encodes three genes from the GH17 gene family and five members in the GH16 subfamily 18 and 19 fungal chitin transferases. We created deletion mutants lacking all three GH17 genes and determined that they had wild type morphology and are more sensitive to cell wall perturbation reagents than the wild type. We also created deletion mutants lacking all five GH16 subfamily 18 and 19 genes and found that they had wild type morphology and are more sensitive to cell wall perturbation reagents than the wild type. We conclude that GH16 and GH17 enzymes play roles in cell wall biogenesis. In N. crassa, GH72 enzymes have been reported to be lichenin transferases, while in other fungi they have been shown to be the β-1,3-glucan transferases. Neurospora triple GH72 deletions give rise to a tight colonial morphology, sensitivity to cell wall perturbation reagents, and release of cell wall proteins into the medium. To ask if GH72 and GH17 enzymes might be redundant in N. crassa, we created sextuple mutants lacking the three GH72 genes and the three GH17 genes and found that they were indistinguishable from the GH72 triple mutant. We also found that a recombinant GH72 enzyme is able to form a lichenin-enzyme intermediate demonstrating that GH72 enzymes are lichenin transferases. The N. crassa GH72 enzymes are lichenin transferases and are not redundant with the GH17 β-1,3-glucan transferases.
Collapse
Affiliation(s)
- Pavan Patel
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| | - Stephen J. Free
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| |
Collapse
|
8
|
Cephalosporin C biosynthesis and fermentation in Acremonium chrysogenum. Appl Microbiol Biotechnol 2022; 106:6413-6426. [DOI: 10.1007/s00253-022-12181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
|
9
|
Verburg K, van Neer J, Duca M, de Cock H. Novel Treatment Approach for Aspergilloses by Targeting Germination. J Fungi (Basel) 2022; 8:758. [PMID: 35893126 PMCID: PMC9331470 DOI: 10.3390/jof8080758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
Germination of conidia is an essential process within the Aspergillus life cycle and plays a major role during the infection of hosts. Conidia are able to avoid detection by the majority of leukocytes when dormant. Germination can cause severe health problems, specifically in immunocompromised people. Aspergillosis is most often caused by Aspergillus fumigatus (A. fumigatus) and affects neutropenic patients, as well as people with cystic fibrosis (CF). These patients are often unable to effectively detect and clear the conidia or hyphae and can develop chronic non-invasive and/or invasive infections or allergic inflammatory responses. Current treatments with (tri)azoles can be very effective to combat a variety of fungal infections. However, resistance against current azoles has emerged and has been increasing since 1998. As a consequence, patients infected with resistant A. fumigatus have a reported mortality rate of 88% to 100%. Especially with the growing number of patients that harbor azole-resistant Aspergilli, novel antifungals could provide an alternative. Aspergilloses differ in defining characteristics, but germination of conidia is one of the few common denominators. By specifically targeting conidial germination with novel antifungals, early intervention might be possible. In this review, we propose several morphotypes to disrupt conidial germination, as well as potential targets. Hopefully, new antifungals against such targets could contribute to disturbing the ability of Aspergilli to germinate and grow, resulting in a decreased fungal burden on patients.
Collapse
Affiliation(s)
- Kim Verburg
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.V.); (J.v.N.)
| | - Jacq van Neer
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.V.); (J.v.N.)
| | - Margherita Duca
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Hans de Cock
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.V.); (J.v.N.)
| |
Collapse
|
10
|
Abstract
Is it possible to learn and create a first Hidden Markov Model (HMM) without programming skills or understanding the algorithms in detail? In this concise tutorial, we present the HMM through the 2 general questions it was initially developed to answer and describe its elements. The HMM elements include variables, hidden and observed parameters, the vector of initial probabilities, and the transition and emission probability matrices. Then, we suggest a set of ordered steps, for modeling the variables and illustrate them with a simple exercise of modeling and predicting transmembrane segments in a protein sequence. Finally, we show how to interpret the results of the algorithms for this particular problem. To guide the process of information input and explicit solution of the basic HMM algorithms that answer the HMM questions posed, we developed an educational webserver called HMMTeacher. Additional solved HMM modeling exercises can be found in the user’s manual and answers to frequently asked questions. HMMTeacher is available at https://hmmteacher.mobilomics.org, mirrored at https://hmmteacher1.mobilomics.org. A repository with the code of the tool and the webpage is available at https://gitlab.com/kmilo.f/hmmteacher.
Collapse
Affiliation(s)
- Camilo Fuentes-Beals
- PhD Program in Sciences Mention Modeling of Chemical and Biological Systems, School of Bioinformatics Engineering, Center for Bioinformatics, Simulation and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, University of Talca, Campus Talca, Talca, Chile
| | - Alejandro Valdés-Jiménez
- Center for Bioinformatics, Simulation and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, University of Talca, Campus Talca, Talca, Chile
| | - Gonzalo Riadi
- ANID–Millennium Science Initiative Program Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Center for Bioinformatics, Simulation and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, University of Talca, Talca, Chile
- * E-mail:
| |
Collapse
|
11
|
Cord-Landwehr S, Moerschbacher BM. Deciphering the ChitoCode: fungal chitins and chitosans as functional biopolymers. Fungal Biol Biotechnol 2021; 8:19. [PMID: 34893090 PMCID: PMC8665597 DOI: 10.1186/s40694-021-00127-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Chitins and chitosans are among the most widespread and versatile functional biopolymers, with interesting biological activities and superior material properties. While chitins are evolutionary ancient and present in many eukaryotes except for higher plants and mammals, the natural distribution of chitosans, i.e. extensively deacetylated derivatives of chitin, is more limited. Unequivocal evidence for its presence is only available for fungi where chitosans are produced from chitin by the action of chitin deacetylases. However, neither the structural details such as fraction and pattern of acetylation nor the physiological roles of natural chitosans are known at present. We hypothesise that the chitin deacetylases are generating chitins and chitosans with specific acetylation patterns and that these provide information for the interaction with specific chitin- and chitosan-binding proteins. These may be structural proteins involved in the assembly of the complex chitin- and chitosan-containing matrices such as fungal cell walls and insect cuticles, chitin- and chitosan-modifying and -degrading enzymes such as chitin deacetylases, chitinases, and chitosanases, but also chitin- and chitosan-recognising receptors of the innate immune systems of plants, animals, and humans. The acetylation pattern, thus, may constitute a kind of 'ChitoCode', and we are convinced that new in silico, in vitro, and in situ analytical tools as well as new synthetic methods of enzyme biotechnology and organic synthesis are currently offering an unprecedented opportunity to decipher this code. We anticipate a deeper understanding of the biology of chitin- and chitosan-containing matrices, including their synthesis, assembly, mineralisation, degradation, and perception. This in turn will improve chitin and chitosan biotechnology and the development of reliable chitin- and chitosan-based products and applications, e.g. in medicine and agriculture, food and feed sciences, as well as cosmetics and material sciences.
Collapse
Affiliation(s)
- Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany.
| |
Collapse
|
12
|
Functional Genomic and Biochemical Analysis Reveals Pleiotropic Effect of Congo Red on Aspergillus fumigatus. mBio 2021; 12:mBio.00863-21. [PMID: 34006660 PMCID: PMC8262895 DOI: 10.1128/mbio.00863-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inhibition of fungal growth by Congo red (CR) has been putatively associated with specific binding to β-1,3-glucans, which blocks cell wall polysaccharide synthesis. In this study, we searched for transcription factors (TFs) that regulate the response to CR and interrogated their regulon. During the investigation of the susceptibility to CR of the TF mutant library, several CR-resistant and -hypersensitive mutants were discovered and further studied. Abnormal distorted swollen conidia called Quasimodo cells were seen in the presence of CR. Quasimodo cells in the resistant mutants were larger than the ones in the sensitive and parental strains; consequently, the conidia of the resistant mutants absorbed more CR than the germinating conidia of the sensitive or parental strains. Accordingly, this higher absorption rate by Quasimodo cells resulted in the removal of CR from the culture medium, allowing a subset of conidia to germinate and grow. In contrast, all resting conidia of the sensitive mutants and the parental strain were killed. This result indicated that the heterogeneity of the conidial population is essential to promote the survival of Aspergillus fumigatus in the presence of CR. Moreover, amorphous surface cell wall polysaccharides such as galactosaminogalactan control the influx of CR inside the cells and, accordingly, resistance to the drug. Finally, long-term incubation with CR led to the discovery of a new CR-induced growth effect, called drug-induced growth stimulation (DIGS), since the growth of one of them could be stimulated after recovery from CR stress.
Collapse
|
13
|
van Leeuwe TM, Arentshorst M, Forn-Cuní G, Geoffrion N, Tsang A, Delvigne F, Meijer AH, Ram AFJ, Punt PJ. Deletion of the Aspergillus niger Pro-Protein Processing Protease Gene kexB Results in a pH-Dependent Morphological Transition during Submerged Cultivations and Increases Cell Wall Chitin Content. Microorganisms 2020; 8:E1918. [PMID: 33276589 PMCID: PMC7761569 DOI: 10.3390/microorganisms8121918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
There is a growing interest in the use of post-fermentation mycelial waste to obtain cell wall chitin as an added-value product. In the pursuit to identify suitable production strains that can be used for post-fermentation cell wall harvesting, we turned to an Aspergillus niger strain in which the kexB gene was deleted. Previous work has shown that the deletion of kexB causes hyper-branching and thicker cell walls, traits that may be beneficial for the reduction in fermentation viscosity and lysis. Hyper-branching of ∆kexB was previously found to be pH-dependent on solid medium at pH 6.0, but was absent at pH 5.0. This phenotype was reported to be less pronounced during submerged growth. Here, we show a series of controlled batch cultivations at a pH range of 5, 5.5, and 6 to examine the pellet phenotype of ΔkexB in liquid medium. Morphological analysis showed that ΔkexB formed wild type-like pellets at pH 5.0, whereas the hyper-branching ΔkexB phenotype was found at pH 6.0. The transition of phenotypic plasticity was found in cultivations at pH 5.5, seen as an intermediate phenotype. Analyzing the cell walls of ΔkexB from these controlled pH-conditions showed an increase in chitin content compared to the wild type across all three pH values. Surprisingly, the increase in chitin content was found to be irrespective of the hyper-branching morphology. Evidence for alterations in cell wall make-up are corroborated by transcriptional analysis that showed a significant cell wall stress response in addition to the upregulation of genes encoding other unrelated cell wall biosynthetic genes.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Mark Arentshorst
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Gabriel Forn-Cuní
- Institute of Biology Leiden, Animal Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (G.F.-C.); (A.H.M.)
| | - Nicholas Geoffrion
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC H4B1R6, Canada; (N.G.); (A.T.)
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC H4B1R6, Canada; (N.G.); (A.T.)
| | - Frank Delvigne
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, 2B, 5030 Gembloux, Belgium;
| | - Annemarie H. Meijer
- Institute of Biology Leiden, Animal Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (G.F.-C.); (A.H.M.)
| | - Arthur F. J. Ram
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Peter J. Punt
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|