1
|
Ye F, Kang Z, Kou H, Yang Y, Chen W, Wang S, Sun J, Liu F. G-Protein Coupled Receptor Gpr-1 Is Important for the Growth and Nutritional Metabolism of an Invasive Bark Beetle Symbiont Fungi Leptographium procerum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3354-3362. [PMID: 38230891 DOI: 10.1021/acs.jafc.3c07547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Leptographium procerum has been demonstrated to play important roles in the invasive success of red turpentine beetle (RTB), one of the most destructive invasive pests in China. Our previous studies found that bacterial volatile ammonia plays an important role in the maintenance of the RTB-L. procerum invasive complex. In this study, we found a GPCR gene Gpr-1 that was a response to ammonia but not involved in the ammonia-induced carbohydrate metabolism. Deletion of Gpr-1 significantly inhibited the growth and pathogenicity but thickened the cell wall of L. procerum, resulting in more resistance to cell wall-perturbing agents. Further analyses suggested that Gpr-1 deletion caused growth defects that might be due to the dysregulation of the amino acid and lipid metabolisms. The thicker cell wall in the ΔGpr-1 mutant was induced through the cell wall remodeling process. Our results indicated that Gpr-1 is essential for the growth of L. procerum by regulating the nutritional metabolism, which can be further explored for potential applications in the management of RTB.
Collapse
Affiliation(s)
- Fangyuan Ye
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Kang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hongru Kou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunwen Yang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wei Chen
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Saige Wang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Fanghua Liu
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
2
|
Rocafort M, Srivastava V, Bowen JK, Díaz-Moreno SM, Guo Y, Bulone V, Plummer KM, Sutherland PW, Anderson MA, Bradshaw RE, Mesarich CH. Cell Wall Carbohydrate Dynamics during the Differentiation of Infection Structures by the Apple Scab Fungus, Venturia inaequalis. Microbiol Spectr 2023; 11:e0421922. [PMID: 37039647 PMCID: PMC10269774 DOI: 10.1128/spectrum.04219-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/15/2023] [Indexed: 04/12/2023] Open
Abstract
Scab, caused by the biotrophic fungal pathogen Venturia inaequalis, is the most economically important disease of apples. During infection, V. inaequalis colonizes the subcuticular host environment, where it develops specialized infection structures called runner hyphae and stromata. These structures are thought to be involved in nutrient acquisition and effector (virulence factor) delivery, but also give rise to conidia that further the infection cycle. Despite their importance, very little is known about how these structures are differentiated. Likewise, nothing is known about how these structures are protected from host defenses or recognition by the host immune system. To better understand these processes, we first performed a glycosidic linkage analysis of sporulating tubular hyphae from V. inaequalis developed in culture. This analysis revealed that the V. inaequalis cell wall is mostly composed of glucans (44%) and mannans (37%), whereas chitin represents a much smaller proportion (4%). Next, we used transcriptomics and confocal laser scanning microscopy to provide insights into the cell wall carbohydrate composition of runner hyphae and stromata. These analyses revealed that, during subcuticular host colonization, genes of V. inaequalis putatively associated with the biosynthesis of immunogenic carbohydrates, such as chitin and β-1,6-glucan, are downregulated relative to growth in culture, while on the surface of runner hyphae and stromata, chitin is deacetylated to the less-immunogenic carbohydrate chitosan. These changes are anticipated to enable the subcuticular differentiation of runner hyphae and stromata by V. inaequalis, as well as to protect these structures from host defenses and recognition by the host immune system. IMPORTANCE Plant-pathogenic fungi are a major threat to food security. Among these are subcuticular pathogens, which often cause latent asymptomatic infections, making them difficult to control. A key feature of these pathogens is their ability to differentiate specialized subcuticular infection structures that, to date, remain largely understudied. This is typified by Venturia inaequalis, which causes scab, the most economically important disease of apples. In this study, we show that, during subcuticular host colonization, V. inaequalis downregulates genes associated with the biosynthesis of two immunogenic cell wall carbohydrates, chitin and β-1,6-glucan, and coats its subcuticular infection structures with a less-immunogenic carbohydrate, chitosan. These changes are anticipated to enable host colonization by V. inaequalis and provide a foundation for understanding subcuticular host colonization by other plant-pathogenic fungi. Such an understanding is important, as it may inform the development of novel control strategies against subcuticular plant-pathogenic fungi.
Collapse
Affiliation(s)
- Mercedes Rocafort
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | - Joanna K. Bowen
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland, New Zealand
| | - Sara M. Díaz-Moreno
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | - Yanan Guo
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
- School of Food, Agriculture and Wine, The University of Adelaide, Waite Campus, Adelaide, South Australia, Australia
| | - Kim M. Plummer
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, Melbourne, Victoria, Australia
| | - Paul W. Sutherland
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland, New Zealand
| | - Marilyn A. Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Victoria, Australia
| | - Rosie E. Bradshaw
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
| | - Carl H. Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
| |
Collapse
|
3
|
Khakhar A. A roadmap for the creation of synthetic lichen. Biochem Biophys Res Commun 2023; 654:87-93. [PMID: 36898228 DOI: 10.1016/j.bbrc.2023.02.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Lichens represent a charismatic corner of biology that has a rich history of scientific exploration, but to which modern biological techniques have been sparsely applied. This has limited our understanding of phenomena unique to lichen, such as the emergent development of physically coupled microbial consortia or distributed metabolisms. The experimental intractability of natural lichens has prevented studies of the mechanistic underpinnings of their biology. Creating synthetic lichen from experimentally tractable, free-living microbes has the potential to overcome these challenges. They could also serve as powerful new chassis for sustainable biotechnology. In this review we will first briefly introduce what lichen are, what remains mysterious about their biology, and why. We will then articulate the scientific insights that creating a synthetic lichen will generate and lay out a roadmap for how this could be achieved using synthetic biology. Finally, we will explore the translational applications of synthetic lichen and detail what is needed to advance the pursuit of their creation.
Collapse
Affiliation(s)
- Arjun Khakhar
- Biology Department, Colorado State University, 251 West Pitkin Drive, Fort Collins, CO, 80525, USA.
| |
Collapse
|
4
|
Evidencing New Roles for the Glycosyl-Transferase Cps1 in the Phytopathogenic Fungus Botrytis cinerea. J Fungi (Basel) 2022; 8:jof8090899. [PMID: 36135623 PMCID: PMC9500679 DOI: 10.3390/jof8090899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
The fungal cell wall occupies a central place in the interaction between fungi and their environment. This study focuses on the role of the putative polysaccharide synthase Cps1 in the physiology, development and virulence of the grey mold-causing agent Botrytis cinerea. Deletion of the Bccps1 gene does not affect the germination of the conidia (asexual spores) or the early mycelial development, but it perturbs hyphal expansion after 24 h, revealing a two-phase hyphal development that has not been reported so far. It causes a severe reduction of mycelial growth in a solid medium and modifies hyphal aggregation into pellets in liquid cultures. It strongly impairs plant penetration, plant colonization and the formation of sclerotia (survival structures). Loss of the BcCps1 protein associates with a decrease in glucans and glycoproteins in the fungus cell wall and the up-accumulation of 132 proteins in the mutant’s exoproteome, among which are fungal cell wall enzymes. This is accompanied by an increased fragility of the mutant mycelium, an increased sensitivity to some environmental stresses and a reduced adhesion to plant surface. Taken together, the results support a significant role of Cps1 in the cell wall biology of B. cinerea.
Collapse
|
5
|
Gortikov M, Yakubovich E, Wang Z, López-Giráldez F, Tu Y, Townsend JP, Yarden O. Differential Expression of Cell Wall Remodeling Genes Is Part of the Dynamic Phase-Specific Transcriptional Program of Conidial Germination of Trichoderma asperelloides. J Fungi (Basel) 2022; 8:854. [PMID: 36012842 PMCID: PMC9410309 DOI: 10.3390/jof8080854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
The nature of saprophytic and mycoparasitic hyphal growth of Trichoderma spp. has been studied extensively, yet its initiation via conidial germination in this genus is less well understood. Using near-synchronous germinating cultures of Trichoderma asperelloides, we followed the morphological progression from dormant conidia to initial polar growth to germling formation and to evidence for first branching. We found that the stage-specific transcriptional profile of T. asperelloides is one of the most dynamic described to date: transcript abundance of over 5000 genes-comprising approximately half of the annotated genome-was unremittingly reduced in the transition from dormancy to polar growth. Conversely, after the onset of germination, the transcript abundance of approximately a quarter of the genome was unremittingly elevated during the transition from elongation to initial branching. These changes are a testimony to the substantial developmental events that accompany germination. Bayesian network analysis identified several chitinase- and glucanase-encoding genes as active transcriptional hubs during germination. Furthermore, the expression of specific members of the chitin synthase and glucan elongase families was significantly increased during germination in the presence of Rhizoctonia solani-a known host of the mycoparasite-indicating that host recognition can occur during the early stages of mycoparasite development.
Collapse
Affiliation(s)
- Maggie Gortikov
- Department of Plant Pathology and Microbiology, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Elizabeta Yakubovich
- Department of Plant Pathology and Microbiology, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06511, USA
| | | | - Yujia Tu
- Department of Mathematics and Computer Science, University of Strasbourg, 67081 Strasbourg, France
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06511, USA
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|