1
|
Wang D, Pan Z, Wang G, Ye B, Wang Q, Zuo Z, Zou J, Xie S. Gonadal Transcriptome Analysis and Sequence Characterization of Sex-Related Genes in Cranoglanis bouderius. Int J Mol Sci 2022; 23:ijms232415840. [PMID: 36555482 PMCID: PMC9779447 DOI: 10.3390/ijms232415840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
In China, the Cranoglanis bouderius is classified as a national class II-protected animal. The development of C. bouderius populations has been affected by a variety of factors over the past few decades, with severe declines occurring. Considering the likelihood of continued population declines of the C. bouderius in the future, it is critical to investigate the currently unknown characteristics of gonadal differentiation and sex-related genes for C. bouderius conservation. In this study, the Illumina sequencing platform was used to sequence the gonadal transcriptome of the C. bouderius to identify the pathways and genes related to gonadal development and analyze the expression differences in the gonads. A total of 12,002 DEGs were identified, with 7220 being significantly expressed in the ovary and 4782 being significantly expressed in the testis. According to the functional enrichment results, the cell cycle, RNA transport, apoptosis, Wnt signaling pathway, p53 signaling pathway, and prolactin signaling pathway play important roles in sex development in the C. bouderius. Furthermore, the sequence characterization and evolutionary analysis revealed that AMH, DAX1, NANOS1, and AR of the C. bouderius are highly conserved. Specifically, the qRT-PCR results from various tissues showed significant differences in AMH, DAX1, NANOS1, and AR expression levels in the gonads of both sexes of C. bouderius. These analyses indicated that AMH, DAX1, NANOS1, and AR may play important roles in the differentiation and development of C. bouderius gonads. To our best knowledge, this study is the first to analyze the C. bouderius gonadal transcriptome and identify the structures of sex-related genes, laying the foundation for future research.
Collapse
Affiliation(s)
- Dongjie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhengkun Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guoxia Wang
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangzhou 510640, China
- Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Bin Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiujie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhiheng Zuo
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (J.Z.); (S.X.); Tel.: +86-020-87571321 (J.Z.); +86-020-87571321 (S.X.)
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (J.Z.); (S.X.); Tel.: +86-020-87571321 (J.Z.); +86-020-87571321 (S.X.)
| |
Collapse
|
2
|
PARP7 mono-ADP-ribosylates the agonist conformation of the androgen receptor in the nucleus. Biochem J 2021; 478:2999-3014. [PMID: 34264286 DOI: 10.1042/bcj20210378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022]
Abstract
We recently described a signal transduction pathway that contributes to androgen receptor (AR) regulation based on site-specific ADP-ribosylation by PARP7, a mono-ADP-ribosyltransferase implicated in several human cancers. ADP-ribosylated AR is recognized by PARP9/DTX3L, a heterodimeric complex that contains an ADP-ribose reader (PARP9) and a ubiquitin E3 ligase (DTX3L). Here, we have characterized the cellular and biochemical requirements for AR ADP-ribosylation by PARP7. We found that the reaction requires nuclear localization of PARP7 and an agonist-induced conformation of AR. PARP7 contains a Cys3His1-type zinc finger (ZF), which also is critical for AR ADP-ribosylation. The Parp7 ZF is required for efficient nuclear import by a nuclear localization signal encoded in PARP7, but rescue experiments indicate the ZF makes a contribution to AR ADP-ribosylation that is separable from the effect on nuclear transport. ZF mutations do not detectably reduce PARP7 catalytic activity and binding to AR, but they do result in the loss of PARP7 enhancement of AR-dependent transcription of the MYBPC1 gene. Our data reveals critical roles for AR conformation and the PARP7 ZF in AR ADP-ribosylation and AR-dependent transcription.
Collapse
|
3
|
Bielskutė S, Garcia-Cabau C, Frigolé-Vivas M, Szulc E, De Mol E, Pesarrodona M, García J, Salvatella X. Low amounts of heavy water increase the phase separation propensity of a fragment of the androgen receptor activation domain. Protein Sci 2021; 30:1427-1437. [PMID: 33978290 DOI: 10.1002/pro.4110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
The phase equilibria of intrinsically disordered proteins are exquisitely sensitive to changes in solution conditions and this can be used to investigate the driving forces of phase separation in vitro as well as the biological roles of phase transitions in live cells. Here we investigate how using D2 O as co-solvent in an aqueous buffer changes the phase equilibrium of a fragment of the activation domain of the androgen receptor, a transcription factor that plays a role in the development of the male phenotype and is a therapeutic target for castration resistant prostate cancer. We show how replacing even small fractions of H2 O with D2 O increases the propensity of this fragment to undergo liquid-liquid phase separation, likely reflecting a stabilization of the hydrophobic interactions that drive condensation. Our results indicate that it is necessary to take this effect into consideration when studying phase separation phenomena with biophysical methods that require using D2 O as a co-solvent. In addition, they suggest that additions of D2 O may be used to enhance phase separation phenomena in cells, facilitating their observation.
Collapse
Affiliation(s)
- Stasė Bielskutė
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Barcelona, Spain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Barcelona, Spain
| | - Marta Frigolé-Vivas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Barcelona, Spain
| | - Elzbieta Szulc
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Barcelona, Spain
| | - Eva De Mol
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Barcelona, Spain
| | - Mireia Pesarrodona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Barcelona, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Joint BSC-IRB Research Programme in Computational Biology, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
4
|
Yang CS, Jividen K, Kamata T, Dworak N, Oostdyk L, Remlein B, Pourfarjam Y, Kim IK, Du KP, Abbas T, Sherman NE, Wotton D, Paschal BM. Androgen signaling uses a writer and a reader of ADP-ribosylation to regulate protein complex assembly. Nat Commun 2021; 12:2705. [PMID: 33976187 PMCID: PMC8113490 DOI: 10.1038/s41467-021-23055-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
Androgen signaling through the androgen receptor (AR) directs gene expression in both normal and prostate cancer cells. Androgen regulates multiple aspects of the AR life cycle, including its localization and post-translational modification, but understanding how modifications are read and integrated with AR activity has been difficult. Here, we show that ADP-ribosylation regulates AR through a nuclear pathway mediated by Parp7. We show that Parp7 mono-ADP-ribosylates agonist-bound AR, and that ADP-ribosyl-cysteines within the N-terminal domain mediate recruitment of the E3 ligase Dtx3L/Parp9. Molecular recognition of ADP-ribosyl-cysteine is provided by tandem macrodomains in Parp9, and Dtx3L/Parp9 modulates expression of a subset of AR-regulated genes. Parp7, ADP-ribosylation of AR, and AR-Dtx3L/Parp9 complex assembly are inhibited by Olaparib, a compound used clinically to inhibit poly-ADP-ribosyltransferases Parp1/2. Our study reveals the components of an androgen signaling axis that uses a writer and reader of ADP-ribosylation to regulate protein-protein interactions and AR activity.
Collapse
Affiliation(s)
- Chun-Song Yang
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Kasey Jividen
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
| | - Teddy Kamata
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Natalia Dworak
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
| | - Luke Oostdyk
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Bartlomiej Remlein
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Yasin Pourfarjam
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Kang-Ping Du
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Tarek Abbas
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Nicholas E Sherman
- W. M. Keck Biomedical Mass Spectrometry Laboratory, University of Virginia, Charlottesville, VA, USA
| | - David Wotton
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Bryce M Paschal
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Ramos JG, de Assis Silva JP, Manso LA, Rodrigues GA, Taboga SR, de Carvalho HF, dos Santos FCA, Biancardi MF. Developmental changes induced by exogenous testosterone during early phases of prostate organogenesis. Exp Mol Pathol 2020; 115:104473. [DOI: 10.1016/j.yexmp.2020.104473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/18/2020] [Accepted: 05/21/2020] [Indexed: 01/07/2023]
|
6
|
Stortz M, Pecci A, Presman DM, Levi V. Unraveling the molecular interactions involved in phase separation of glucocorticoid receptor. BMC Biol 2020; 18:59. [PMID: 32487073 PMCID: PMC7268505 DOI: 10.1186/s12915-020-00788-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/05/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Functional compartmentalization has emerged as an important factor modulating the kinetics and specificity of biochemical reactions in the nucleus, including those involved in transcriptional regulation. The glucocorticoid receptor (GR) is a ligand-activated transcription factor that translocates to the nucleus upon hormone stimulation and distributes between the nucleoplasm and membraneless compartments named nuclear foci. While a liquid-liquid phase separation process has been recently proposed to drive the formation of many nuclear compartments, the mechanisms governing the heterogeneous organization of GR in the nucleus and the functional relevance of foci formation remain elusive. RESULTS We dissected some of the molecular interactions involved in the formation of GR condensates and analyzed the GR structural determinants relevant to this process. We show that GR foci present properties consistent with those expected for biomolecular condensates formed by a liquid-liquid phase separation process in living human cells. Their formation requires an initial interaction of GR with certain chromatin regions at specific locations within the nucleus. Surprisingly, the intrinsically disordered region of GR is not essential for condensate formation, in contrast to many nuclear proteins that require disordered regions to phase separate, while the ligand-binding domain seems essential for that process. We finally show that GR condensates include Mediator, a protein complex involved in transcription regulation. CONCLUSIONS We show that GR foci have properties of liquid condensates and propose that active GR molecules interact with chromatin and recruit multivalent cofactors whose interactions with additional molecules lead to the formation of a focus. The biological relevance of the interactions occurring in GR condensates supports their involvement in transcription regulation.
Collapse
Affiliation(s)
- Martin Stortz
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| | - Adali Pecci
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| | - Diego M Presman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Cui X, Pertile R, Eyles DW. The vitamin D receptor (VDR) binds to the nuclear matrix via its hinge domain: A potential mechanism for the reduction in VDR mediated transcription in mitotic cells. Mol Cell Endocrinol 2018; 472:18-25. [PMID: 29183808 DOI: 10.1016/j.mce.2017.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022]
Abstract
Vitamin D is best known for its regulation of calcium homeostasis. Vitamin D exerts its genomic actions via the vitamin D receptor (VDR). As a member of the superfamily of nuclear receptors (NR), the VDR is primarily located within the nucleus of non-dividing cells. We show here that the VDR relocates from the nucleus into the cytoplasm across all stages of cell division in CHO cells. Furthermore, we show that the VDR is transcriptionally inert during cell division. In addition, 1α, 25 dihydroxyvitamin D (1,25(OH)2D3) promotes VDR binding to the nuclear matrix. Finally, we assessed the structural nature of VDR binding to the nuclear matrix. Mutation of the hinge domain reduced VDR's ability to bind to the nuclear matrix and to initiate transcription in response to 1,25(OH)2D3. Taken together, our data suggest that the association between the VDR and the nuclear matrix accounts for the apparent cytosolic distribution as the matrix disperses within the cytoplasm when cells divide. This may also explain the dramatic reduction in VDR mediated transcription during cell division. Our data also confirm that similar to other NRs, the hinge domain of the VDR is responsible for this association.
Collapse
Affiliation(s)
- Xiaoying Cui
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia
| | - Renata Pertile
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia
| | - Darryl W Eyles
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia; Queensland Centre for Mental Health Research, Wacol, Qld 4076, Australia.
| |
Collapse
|
8
|
Maly IV, Hofmann WA. Fatty Acids and Calcium Regulation in Prostate Cancer. Nutrients 2018; 10:nu10060788. [PMID: 29921791 PMCID: PMC6024573 DOI: 10.3390/nu10060788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is a widespread malignancy characterized by a comparative ease of primary diagnosis and difficulty in choosing the individualized course of treatment. Management of prostate cancer would benefit from a clearer understanding of the molecular mechanisms behind the transition to the lethal, late-stage forms of the disease, which could potentially yield new biomarkers for differential prognosis and treatment prioritization in addition to possible new therapeutic targets. Epidemiological research has uncovered a significant correlation of prostate cancer incidence and progression with the intake (and often co-intake) of fatty acids and calcium. Additionally, there is evidence of the impact of these nutrients on intracellular signaling, including the mechanisms mediated by the calcium ion as a second messenger. The present review surveys the recent literature on the molecular mechanisms associated with the critical steps in the prostate cancer progression, with special attention paid to the regulation of these processes by fatty acids and calcium homeostasis. Testable hypotheses are put forward that integrate some of the recent results in a more unified picture of these phenomena at the interface of cell signaling and metabolism.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| | - Wilma A Hofmann
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| |
Collapse
|
9
|
Mapping the Dynamics of the Glucocorticoid Receptor within the Nuclear Landscape. Sci Rep 2017; 7:6219. [PMID: 28740156 PMCID: PMC5524710 DOI: 10.1038/s41598-017-06676-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/15/2017] [Indexed: 12/28/2022] Open
Abstract
The distribution of the transcription machinery among different sub-nuclear domains raises the question on how the architecture of the nucleus modulates the transcriptional response. Here, we used fluorescence fluctuation analyses to quantitatively explore the organization of the glucocorticoid receptor (GR) in the interphase nucleus of living cells. We found that this ligand-activated transcription factor diffuses within the nucleus and dynamically interacts with bodies enriched in the coregulator NCoA-2, DNA-dependent foci and chromatin targets. The distribution of the receptor among the nuclear compartments depends on NCoA-2 and the conformation of the receptor as assessed with synthetic ligands and GR mutants with impaired transcriptional abilities. Our results suggest that the partition of the receptor in different nuclear reservoirs ultimately regulates the concentration of receptor available for the interaction with specific targets, and thus has an impact on transcription regulation.
Collapse
|
10
|
Clinton TN, Woldu SL, Raj GV. Degarelix versus luteinizing hormone-releasing hormone agonists for the treatment of prostate cancer. Expert Opin Pharmacother 2017; 18:825-832. [PMID: 28480768 PMCID: PMC7171911 DOI: 10.1080/14656566.2017.1328056] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Androgen deprivation therapy (ADT) is the mainstay for advanced, hormone-sensitive prostate cancer, and options include surgical castration, luteinizing hormone-releasing hormone (LHRH) agonist, and more recently, gonadotropin releasing hormone (GnRH) antagonist therapy. Our understanding of the mechanisms and adverse effects of ADT has increased substantially, including the class-specific adverse effects of ADT. Areas covered: This review will summarize the pharmacodynamic and pharmacokinetic properties of the GnRH antagonist degarelix and its role in the management of advanced prostate cancer, the clinical evidence supporting its regulatory approval, as well as potential benefits and disadvantages over traditional LHRH agonist therapy. Expert opinion: Degarelix represents a newer class of ADT that results in a rapid and reliable decline in serum testosterone, a quality that makes it particularly advantageous in men presenting with symptomatic, hormone-sensitive prostate cancer. Due to differences in mechanism of action, there is observational data suggesting a potential cardiovascular and even oncologic benefit over traditional LHRH agonist therapy. Further research is ongoing to more clearly define this potential benefit.
Collapse
Affiliation(s)
- Timothy N Clinton
- a Department of Urology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Solomon L Woldu
- a Department of Urology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Ganesh V Raj
- a Department of Urology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
11
|
Biancardi MF, dos Santos FCA, de Carvalho HF, Sanches BDA, Taboga SR. Female prostate: historical, developmental, and morphological perspectives. Cell Biol Int 2017; 41:1174-1183. [DOI: 10.1002/cbin.10759] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/27/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Manoel F. Biancardi
- Department of Histology, Embryology, and Cell Biology, Federal University of Goiás, Av. Esperança; Campus Samambaia; Goiânia, Goiás 74690-900 Brazil
| | - Fernanda C. A. dos Santos
- Department of Histology, Embryology, and Cell Biology, Federal University of Goiás, Av. Esperança; Campus Samambaia; Goiânia, Goiás 74690-900 Brazil
| | - Hernandes F. de Carvalho
- Department of Structural and Functional Biology, State University of Campinas; Av. Bertrand Russel; Campinas São Paulo 13084864 Brazil
| | - Bruno D. A. Sanches
- Department of Structural and Functional Biology, State University of Campinas; Av. Bertrand Russel; Campinas São Paulo 13084864 Brazil
| | - Sebastião R. Taboga
- Department of Biology, State University of São Paulo; R. Cristóvão Colombo 2265; São José do Rio Preto São Paulo 15054000 Brazil
| |
Collapse
|
12
|
Biancardi MF, Perez APS, Góes RM, Santos FCA, Vilamaior PSL, Taboga SR. Prenatal testosterone exposure as a model for the study of endocrine-disrupting chemicals on the gerbil prostate. Exp Biol Med (Maywood) 2016; 237:1298-309. [DOI: 10.1258/ebm.2012.012051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of the prostate depends on a precise androgenic control, so sensible interferences may predispose this gland to develop prostatic diseases during life. These aspects are of interest and preoccupation, since human beings are exposed to a growing number of endocrine-disrupting chemicals with androgenic potential. Therefore, our aim was to evaluate the prostates of adult gerbils exposed to testosterone during intrauterine life. Serological, morphological, morphometric-stereologic, immunohistochemical and three-dimensional reconstruction analyses were used. We found that the testosterone effects were dose-dependent and more harmful to females, leading to the development of masculine characteristics, evidenced by an increased anogenital distance, and absence of vaginal opening and the ectopic development of prostatic tissue. Moreover, premalignant lesions, such as prostatic intraepithelial neoplasia, were observed in addition to inflammatory foci in the prostate. The results showed that the prenatal exposure to testosterone may affect the reproductive system, disrupting developmental processes and increasing susceptibility to the development of prostatic diseases in the Mongolian gerbil.
Collapse
Affiliation(s)
- Manoel F Biancardi
- Department of Cell Biology, Institute of Biology, UNICAMP, Campinas, São Paulo, CP 6109, 13084-864
| | - Ana PS Perez
- Department of Cell Biology, Institute of Biology, UNICAMP, Campinas, São Paulo, CP 6109, 13084-864
| | - Rejane M Góes
- Laboratory of Microscopy and Microanalysis, Department of Biology, IBILCE, São Paulo State University, São José do Rio Preto, São Paulo 15054-000
| | - Fernanda CA Santos
- Department of Morphology, Federal University of Goiás, Goiânia, Goiás 74001-970
| | - Patrícia SL Vilamaior
- Biological Sciences and Veterinary Medicine School, Rio Preto Universitary Center - UNIRP, São José do Rio Preto, São Paulo 15025-400, Brazil
| | - Sebastião R Taboga
- Department of Cell Biology, Institute of Biology, UNICAMP, Campinas, São Paulo, CP 6109, 13084-864
- Laboratory of Microscopy and Microanalysis, Department of Biology, IBILCE, São Paulo State University, São José do Rio Preto, São Paulo 15054-000
| |
Collapse
|
13
|
Olsen JR, Azeem W, Hellem MR, Marvyin K, Hua Y, Qu Y, Li L, Lin B, Ke XS, Øyan AM, Kalland KH. Context dependent regulatory patterns of the androgen receptor and androgen receptor target genes. BMC Cancer 2016; 16:377. [PMID: 27378372 PMCID: PMC4932678 DOI: 10.1186/s12885-016-2453-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 06/23/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Expression of the androgen receptor (AR) is associated with androgen-dependent proliferation arrest and terminal differentiation of normal prostate epithelial cells. Additionally, activation of the AR is required for survival of benign luminal epithelial cells and primary cancer cells, thus androgen deprivation therapy (ADT) leads to apoptosis in both benign and cancerous tissue. Escape from ADT is known as castration-resistant prostate cancer (CRPC). In the course of CRPC development the AR typically switches from being a cell-intrinsic inhibitor of normal prostate epithelial cell proliferation to becoming an oncogene that is critical for prostate cancer cell proliferation. A clearer understanding of the context dependent activation of the AR and its target genes is therefore desirable. METHODS Immortalized human prostate basal epithelial EP156T cells and progeny cells that underwent epithelial to mesenchymal transition (EMT), primary prostate epithelial cells (PrECs) and prostate cancer cell lines LNCaP, VCaP and 22Rv1 were used to examine context dependent restriction and activation of the AR and classical target genes, such as KLK3. Genome-wide gene expression analyses and single cell protein analyses were applied to study the effect of different contexts. RESULTS A variety of growth conditions were tested and found unable to activate AR expression and transcription of classical androgen-dependent AR target genes, such as KLK3, in prostate epithelial cells with basal cell features or in mesenchymal type prostate cells. The restriction of androgen- and AR-dependent transcription of classical target genes in prostate basal epithelial cells was at the level of AR expression. Exogenous AR expression was sufficient for androgen-dependent transcription of AR target genes in prostate basal epithelial cells, but did not exert a positive feedback on endogenous AR expression. Treatment of basal prostate epithelial cells with inhibitors of epigenetic gene silencing was not efficient in inducing androgen-dependent transcription of AR target genes, suggesting the importance of missing cofactor(s). CONCLUSIONS Regulatory mechanisms of AR and androgen-dependent AR target gene transcription are insufficiently understood and may be critical for prostate cancer initiation, progression and escape from standard therapy. The present model is useful for the study of context dependent activation of the AR and its transcriptome.
Collapse
Affiliation(s)
- Jan Roger Olsen
- Department of Clinical Science, University of Bergen, Bergen, Norway. .,, Laboratory Bld. 5. etg, Bergen Health, Bergen, NO-5021, Norway.
| | - Waqas Azeem
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | | | - Kristo Marvyin
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Yaping Hua
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Yi Qu
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Lisha Li
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Biaoyang Lin
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Urology, University of Washington, Seattle, WA, USA
| | - Xi- Song Ke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Karl- Henning Kalland
- Department of Clinical Science, University of Bergen, Bergen, Norway. .,Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway. .,Department of Microbiology, Haukeland University Hospital, Bergen, Norway. .,, Laboratory Bld. 5. etg, Bergen Health, Bergen, NO-5021, Norway.
| |
Collapse
|
14
|
Wadosky KM, Koochekpour S. Therapeutic Rationales, Progresses, Failures, and Future Directions for Advanced Prostate Cancer. Int J Biol Sci 2016; 12:409-26. [PMID: 27019626 PMCID: PMC4807161 DOI: 10.7150/ijbs.14090] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/15/2015] [Indexed: 02/07/2023] Open
Abstract
Patients with localized prostate cancer (PCa) have several therapeutic options with good prognosis. However, survival of patients with high-risk, advanced PCa is significantly less than patients with early-stage, organ-confined disease. Testosterone and other androgens have been directly linked to PCa progression since 1941. In this review, we chronicle the discoveries that led to modern therapeutic strategies for PCa. Specifically highlighted is the biology of androgen receptor (AR), the nuclear receptor transcription factor largely responsible for androgen-stimulated and castrate-recurrent (CR) PCa. Current PCa treatment paradigms can be classified into three distinct but interrelated categories: targeting AR at pre-receptor, receptor, or post-receptor signaling. The continuing challenge of disease relapse as CR and/or metastatic tumors, destined to occur within three years of the initial treatment, is also discussed. We conclude that the success of PCa therapies in the future depends on targeting molecular mechanisms underlying tumor recurrence that still may affect AR at pre-receptor, receptor, and post-receptor levels.
Collapse
Affiliation(s)
| | - Shahriar Koochekpour
- ✉ Corresponding author: Dr. Shahriar Koochekpour, Departments of Cancer Genetics and Urology, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA, Telephone: 716-845-3345; Fax: 716-845-1698;
| |
Collapse
|
15
|
Chan SC, Li Y, Dehm SM. Androgen receptor splice variants activate androgen receptor target genes and support aberrant prostate cancer cell growth independent of canonical androgen receptor nuclear localization signal. J Biol Chem 2012; 287:19736-49. [PMID: 22532567 DOI: 10.1074/jbc.m112.352930] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of truncated androgen receptor (AR) splice variants has emerged as an important mechanism of prostate cancer (PCa) resistance to AR-targeted therapy and progression to a lethal castration-resistant phenotype. However, the precise role of these factors at this stage of the disease is not clear due to loss of multiple COOH-terminal AR protein domains, including the canonical nuclear localization signal (NLS) in the AR hinge region. Despite loss of this NLS, we show that diverse truncated AR variant species have a basal level of nuclear localization sufficient for ligand-independent transcriptional activity. Whereas full-length AR requires Hsp90 and importin-β for active nuclear translocation, basal nuclear localization of truncated AR variants is independent of these classical signals. For a subset of truncated AR variants, this basal level of nuclear import can be augmented by unique COOH-terminal sequences that reconstitute classical AR NLS activity. However, this property is separable from ligand-independent transcriptional activity. Therefore, the AR splice variant core consisting of the AR NH(2)-terminal domain and DNA binding domain is sufficient for nuclear localization and androgen-independent transcriptional activation of endogenous AR target genes. Indeed, we show that truncated AR variants with nuclear as well as nuclear/cytoplasmic localization patterns can drive androgen-independent growth of PCa cells. Together, our data demonstrate that diverse truncated AR species with varying efficiencies of nuclear localization can contribute to castration-resistant PCa pathology by driving persistent ligand-independent AR transcriptional activity.
Collapse
Affiliation(s)
- Siu Chiu Chan
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
16
|
Retention and transmission of active transcription memory from progenitor to progeny cells via ligand-modulated transcription factors: elucidation of a concept by BIOPIT model. Cell Biol Int 2012; 36:177-82. [DOI: 10.1042/cbi20090329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Kahle JJ, Gulbahce N, Shaw CA, Lim J, Hill DE, Barabási AL, Zoghbi HY. Comparison of an expanded ataxia interactome with patient medical records reveals a relationship between macular degeneration and ataxia. Hum Mol Genet 2010; 20:510-27. [PMID: 21078624 PMCID: PMC3016911 DOI: 10.1093/hmg/ddq496] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Spinocerebellar ataxias 6 and 7 (SCA6 and SCA7) are neurodegenerative disorders caused by expansion of CAG repeats encoding polyglutamine (polyQ) tracts in CACNA1A, the alpha1A subunit of the P/Q-type calcium channel, and ataxin-7 (ATXN7), a component of a chromatin-remodeling complex, respectively. We hypothesized that finding new protein partners for ATXN7 and CACNA1A would provide insight into the biology of their respective diseases and their relationship to other ataxia-causing proteins. We identified 118 protein interactions for CACNA1A and ATXN7 linking them to other ataxia-causing proteins and the ataxia network. To begin to understand the biological relevance of these protein interactions within the ataxia network, we used OMIM to identify diseases associated with the expanded ataxia network. We then used Medicare patient records to determine if any of these diseases co-occur with hereditary ataxia. We found that patients with ataxia are at 3.03-fold greater risk of these diseases than Medicare patients overall. One of the diseases comorbid with ataxia is macular degeneration (MD). The ataxia network is significantly (P= 7.37 × 10−5) enriched for proteins that interact with known MD-causing proteins, forming a MD subnetwork. We found that at least two of the proteins in the MD subnetwork have altered expression in the retina of Ataxin-7266Q/+ mice suggesting an in vivo functional relationship with ATXN7. Together these data reveal novel protein interactions and suggest potential pathways that can contribute to the pathophysiology of ataxia, MD, and diseases comorbid with ataxia.
Collapse
Affiliation(s)
- Juliette J Kahle
- Department of Cellular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Cross-talk between androgen receptor and pregnane and xenobiotic receptor reveals existence of a novel modulatory action of anti-androgenic drugs. Biochem Pharmacol 2010; 80:964-76. [DOI: 10.1016/j.bcp.2010.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/04/2010] [Accepted: 06/09/2010] [Indexed: 12/15/2022]
|
19
|
Chaturvedi NK, Kumar S, Negi S, Tyagi RK. Endocrine disruptors provoke differential modulatory responses on androgen receptor and pregnane and xenobiotic receptor: potential implications in metabolic disorders. Mol Cell Biochem 2010; 345:291-308. [PMID: 20830510 DOI: 10.1007/s11010-010-0583-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 08/28/2010] [Indexed: 12/21/2022]
Abstract
A systematic comparison of the impact of some potential endocrine disruptors (EDs) on modulation of androgen receptor (AR) and pregnane and xenobiotic receptor (PXR) function was conducted in a multi-step analysis. Promoter-reporter-based transcription assays were performed in conjunction with receptor dynamic studies in living cells that helped implicating the suspected EDs for their deleterious effects. We demonstrate that most of the selected EDs not only inhibit AR transcriptional activity, but also alter its subcellular dynamics. Conversely, some of these anti-androgenic compounds were potent activator of xeno-sensing nuclear receptor, PXR. Interestingly, agonist-activated AR that associates with the mitotic chromatin fails to achieve this association when bound to anti-androgenic EDs. Conclusively, most EDs (except BCH) behaved like pure antagonist for AR while as agonist for PXR. Subsequent experiments with DDT treatment in mice model indicated that in testis AR and its regulated genes PEM and ODC levels are down-regulated, whereas in liver of same mice PEM is up-regulated while AR and ODC remain unchanged. On the contrary, PXR and its regulated genes CYP3A11 and MDR1 levels in mice liver were up-regulated while in testis PXR remained unchanged, CYP3A11 up-regulated and MDR1 were down-regulated. Based on a novel "Biopit" concept it is speculated that long-term exposure to endocrine disrupting chemicals may influence the epigenetic profile of target cells via transcription factors thereby making them vulnerable to onset of chemically induced endocrine-related malignancies or metabolic disorders.
Collapse
|
20
|
Arriagada G, Henriquez B, Moena D, Merino P, Ruiz-Tagle C, Lian JB, Stein GS, Stein JL, Montecino M. Recruitment and subnuclear distribution of the regulatory machinery during 1alpha,25-dihydroxy vitamin D3-mediated transcriptional upregulation in osteoblasts. J Steroid Biochem Mol Biol 2010; 121:156-8. [PMID: 20171279 PMCID: PMC2906675 DOI: 10.1016/j.jsbmb.2010.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 02/12/2010] [Indexed: 01/13/2023]
Abstract
The architectural organization of the genome and regulatory proteins within the nucleus supports gene expression in a physiologically regulated manner. In osteoblastic cells ligand activation induces a nuclear punctate distribution of the 1alpha,25-dihydroxy vitamin D3 (1alpha,25(OH)2D3) receptor (VDR) and promotes its interaction with transcriptional coactivators such as SRC-1, NCoA-62/Skip, and DRIP205. Here, we discuss evidence demonstrating that in osteoblastic cells VDR binds to the nuclear matrix fraction in a 1alpha,25(OH)2D3-dependent manner. This interaction occurs rapidly after exposure to 1alpha,25(OH)2D3 and does not require a functional VDR DNA binding domain. The nuclear matrix-bound VDR molecules colocalize with the also nuclear matrix-associated coactivator DRIP205. We propose a model where the rapid association of VDR with the nuclear matrix fraction represents an event that follows 1alpha,25(OH)2D3-dependent nuclear localization of VDR, but that precedes 1alpha,25(OH)2D3-dependent transcriptional upregulation at target genes.
Collapse
Affiliation(s)
- Gloria Arriagada
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, University of Concepcion, Worcester, Massachusetts, USA
| | - Berta Henriquez
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, University of Concepcion, Worcester, Massachusetts, USA
| | - Daniel Moena
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, University of Concepcion, Worcester, Massachusetts, USA
| | - Paola Merino
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, University of Concepcion, Worcester, Massachusetts, USA
| | - Cinthya Ruiz-Tagle
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, University of Concepcion, Worcester, Massachusetts, USA
| | - Jane B. Lian
- Concepcion, Chile and Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gary S. Stein
- Concepcion, Chile and Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Janet L. Stein
- Concepcion, Chile and Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Martin Montecino
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, University of Concepcion, Worcester, Massachusetts, USA
- To whom correspondence should be addressed: Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biologicas, Universidad de Concepcion, Barrio Universitario s/n, Concepcion, Chile. , Phone: 56-41-2203815, Fax: 56-41-2239687
| |
Collapse
|
21
|
Arriagada G, Paredes R, van Wijnen AJ, Lian JB, van Zundert B, Stein GS, Stein JL, Montecino M. 1alpha,25-dihydroxy vitamin D(3) induces nuclear matrix association of the 1alpha,25-dihydroxy vitamin D(3) receptor in osteoblasts independently of its ability to bind DNA. J Cell Physiol 2009; 222:336-46. [PMID: 19885846 DOI: 10.1002/jcp.21958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
1alpha,25-dihydroxy vitamin D(3) (vitamin D(3)) has an important role during osteoblast differentiation as it directly modulates the expression of key bone-related genes. Vitamin D(3) binds to the vitamin D(3) receptor (VDR), a member of the superfamily of nuclear receptors, which in turn interacts with transcriptional activators to target this regulatory complex to specific sequence elements within gene promoters. Increasing evidence demonstrates that the architectural organization of the genome and regulatory proteins within the eukaryotic nucleus support gene expression in a physiological manner. Previous reports indicated that the VDR exhibits a punctate nuclear distribution that is significantly enhanced in cells grown in the presence of vitamin D(3). Here, we demonstrate that in osteoblastic cells, the VDR binds to the nuclear matrix in a vitamin D(3)-dependent manner. This interaction of VDR with the nuclear matrix occurs rapidly after vitamin D(3) addition and does not require a functional VDR DNA-binding domain. Importantly, nuclear matrix-bound VDR colocalizes with its transcriptional coactivator DRIP205/TRAP220/MED1 which is also matrix bound. Together these results indicate that after ligand stimulation the VDR rapidly enters the nucleus and associates with the nuclear matrix preceding vitamin D(3)-transcriptional upregulation.
Collapse
Affiliation(s)
- Gloria Arriagada
- Facultad de Ciencias Biologicas, Departamento de Bioquimica y Biologia Molecular, Universidad de Concepcion, Concepcion, Chile
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bergerat JP, Céraline J. Pleiotropic functional properties of androgen receptor mutants in prostate cancer. Hum Mutat 2009; 30:145-57. [PMID: 18800375 DOI: 10.1002/humu.20848] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The androgen receptor (AR) signaling pathway plays an important role during the development of the normal prostate gland, but also during the progression of prostate cancer on androgen ablation therapy. Mutations in the AR gene emerge to keep active the AR signaling pathway and to support prostate cancer cells growth and survival despite the low levels of circulating androgens. Indeed, mutations affecting the ligand binding domain (LBD) of the AR have been shown to generate so-called "promiscuous" receptors that present widened ligand specificity and allow the stimulation of these receptors by a larger spectrum of endogenous hormones. Another class of mutations, arising in the amino-terminal domain (NTD) of the receptor, modulate AR interactions with coregulators involved in cell proliferation regulation. Besides characteristics of these well-known types of mutations, the properties of other classes of AR mutants recently described in prostate cancer are currently under investigation. Most interestingly, in addition to their potential role in the mechanisms which allow prostate cancer cells to escape androgen ablation therapy, data suggest that certain AR mutations are present early in the natural history of the disease and may play a role in many aspects of prostate cancer progression. Surprisingly, singular truncated AR devoid of their carboxy-terminal end (CTE) region seem to exert specific paracrine effects and to induce a clonal cooperation with neighboring prostate cancer cells, which may facilitate both the invasion and metastasis processes. In this article, we review the functional properties of different classes of AR mutants and their potential impact on the natural history of prostate cancer. Hum Mutat 0, 1-14, 2008. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jean-Pierre Bergerat
- EA 3430-Signalisation et Cancer de la Prostate, Faculté de Médecine, Université Strasbourg, Strasbourg, France
| | | |
Collapse
|
23
|
Vajda EG, López FJ, Rix P, Hill R, Chen Y, Lee KJ, O'Brien Z, Chang WY, Meglasson MD, Lee YH. Pharmacokinetics and pharmacodynamics of LGD-3303 [9-chloro-2-ethyl-1-methyl-3-(2,2,2-trifluoroethyl)-3H-pyrrolo-[3,2-f]quinolin-7(6H)-one], an orally available nonsteroidal-selective androgen receptor modulator. J Pharmacol Exp Ther 2008; 328:663-70. [PMID: 19017848 DOI: 10.1124/jpet.108.146811] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Selective androgen receptor modulators (SARMs) are a new class of molecules in development to treat a variety of diseases. SARMs maintain the beneficial effects of androgens, including increased muscle mass and bone density, while having reduced activity on unwanted side effects. The mechanisms responsible for the tissue-selective activity of SARMs are not fully understood, and the pharmacokinetic (PK)/pharmacodynamic (PD) relationships are poorly described. Tissue-specific compound distribution potentially could be a mechanism responsible for apparent tissue selectivity. We examined the PK/PD relationship of a novel SARM, LGD-3303 [9-chloro-2-ethyl-1-methyl-3-(2,2,2-trifluoroethyl)-3H-pyrrolo[3,2-f]quinolin-7(6H)-one], in a castrated rat model of androgen deficiency. LGD-3303 has potent activity on levator ani muscle but is a partial agonist on the preputial gland and ventral prostate. LGD-3303 never stimulated ventral prostate above intact levels despite increasing plasma concentrations of compound. Tissue-selective activity was maintained when LGD-3303 was dosed orally or by continuous infusion, two routes of administration with markedly different time versus exposure profiles. Despite the greater muscle activity relative to prostate activity, local tissue concentrations of LGD-3303 were higher in the prostate than in the levator ani muscle. LGD-3303 has SARM properties that are independent of its pharmacokinetic profile, suggesting that the principle mechanism for tissue-selective activity is the result of altered molecular interactions at the level of the androgen receptor.
Collapse
Affiliation(s)
- Eric G Vajda
- Discovery Research, Ligand Pharmaceuticals, Inc., San Diego, California, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Campbell LA, Faivre EJ, Show MD, Ingraham JG, Flinders J, Gross JD, Ingraham HA. Decreased recognition of SUMO-sensitive target genes following modification of SF-1 (NR5A1). Mol Cell Biol 2008; 23:292-307. [PMID: 19116244 DOI: 10.1210/me.2008-0219] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
SUMO modification of nuclear receptors, including the constitutively active receptor steroidogenic factor 1 (SF-1; NR5A1), is proposed to repress their transcriptional activity. We examined the functional and structural consequences of SF-1 sumoylation at two conserved lysines (Lys119 and Lys194) that reside adjacent to the DNA-binding domain (DBD) and ligand-binding domain (LBD), respectively. Surprisingly, while previous loss-of-function studies predicted that sumoylation at Lys194 would greatly impact SF-1 function, the conformation and coregulator recruitment of fully sumoylated SF-1 LBD protein was either unchanged or modestly impaired. Sumoylation at Lys194 also modestly reduced Ser203 phosphorylation. In contrast to these findings, sumoylation of the DBD at Lys119 resulted in a marked and selective loss of DNA binding to noncanonical SF-1 targets, such as inhibinalpha; this binding deficit was extended to all sites when the sumoylated human mutant (R92Q) protein, which exhibits lower activity, was used. Consistent with this result, the K119R mutant, compared to wild-type SF-1, was selectively recruited to a "SUMO-sensitive" site in the endogenous inhibinalpha promoter, leading to increased transcription. DNA binding and sumoylation of Lys119 appeared to be mutually exclusive, suggesting that once SF-1 is bound to DNA, sumoylation may be less important in regulating SF-1 activity. We propose that sumoylation of nuclear receptors imposes an active posttranslational mark that dampens recognition of SUMO-sensitive target genes to restrain their expression.
Collapse
Affiliation(s)
- Lioudmila A Campbell
- Department of Cellular and Molecular Pharmacology and Physiology, University of California, San Francisco, Box 0444, San Francisco, CA 94143-2611, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Somatic Genetic Changes in Prostate Cancer. Prostate Cancer 2008. [DOI: 10.1007/978-1-60327-079-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Chen PH, Tsao YP, Wang CC, Chen SL. Nuclear receptor interaction protein, a coactivator of androgen receptors (AR), is regulated by AR and Sp1 to feed forward and activate its own gene expression through AR protein stability. Nucleic Acids Res 2007; 36:51-66. [PMID: 17984071 PMCID: PMC2248731 DOI: 10.1093/nar/gkm942] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Previously, we found a novel gene, nuclear receptor interaction protein (NRIP), a transcription cofactor that can enhance an AR-driven PSA promoter activity in a ligand-dependent manner in prostate cancer cells. Here, we investigated NRIP regulation. We cloned a 413-bp fragment from the transcription initiation site of the NRIP gene that had strong promoter activity, was TATA-less and GC-rich, and, based on DNA sequences, contained one androgen response element (ARE) and three Sp1-binding sites (Sp1-1, Sp1-2, Sp1-3). Transient promoter luciferase assays, chromatin immunoprecipitation and small RNA interference analyses mapped ARE and Sp1-2-binding sites involved in NRIP promoter activation, implying that NRIP is a target gene for AR or Sp1. AR associates with the NRIP promoter through ARE and indirectly through Sp1-binding site via AR–Sp1 complex formation. Thus both ARE and Sp1-binding site within the NRIP promoter can respond to androgen induction. More intriguingly, NRIP plays a feed-forward role enhancing AR-driven NRIP promoter activity via NRIP forming a complex with AR to protect AR protein from proteasome degradation. This is the first demonstration that NRIP is a novel AR-target gene and that NRIP expression feeds forward and activates its own expression through AR protein stability.
Collapse
Affiliation(s)
- Pei-Hong Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
27
|
Jagla M, Fève M, Kessler P, Lapouge G, Erdmann E, Serra S, Bergerat JP, Céraline J. A splicing variant of the androgen receptor detected in a metastatic prostate cancer exhibits exclusively cytoplasmic actions. Endocrinology 2007; 148:4334-43. [PMID: 17540719 DOI: 10.1210/en.2007-0446] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The androgen receptor (AR) is a ligand-activated transcription factor that displays genomic actions characterized by binding to androgen-response elements in the promoter of target genes as well as nongenomic actions that do not require nuclear translocation and DNA binding. In this study, we report exclusive cytoplasmic actions of a splicing variant of the AR detected in a metastatic prostate cancer. This AR variant, named AR23, results from an aberrant splicing of intron 2, wherein the last 69 nucleotides of the intronic sequence are retained, leading to the insertion of 23 amino acids between the two zinc fingers in the DNA-binding domain. We show that the nuclear entry of AR23 upon dihydrotestosterone (DHT) stimulation is impaired. Alternatively, DHT-activated AR23 forms cytoplasmic and perinuclear aggregates that partially colocalize with the endoplasmic reticulum and are devoid of genomic actions. However, in LNCaP cells, this cytoplasmic DHT-activated AR23 remains partially active as evidenced by the activation of transcription from androgen-responsive promoters, the stimulation of NF-kappaB transcriptional activity and by the decrease of AP-1 transcriptional activity. Our data reveal novel cytoplasmic actions for this splicing AR variant, suggesting a contribution in prostate cancer progression.
Collapse
Affiliation(s)
- Monika Jagla
- Faculté de Médecine/Signalisation et Cancer de la Prostate/Equipe d'Accueil 3430, Université Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Dehm SM, Tindall DJ. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol 2007; 21:2855-63. [PMID: 17636035 DOI: 10.1210/me.2007-0223] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The androgen receptor (AR) is a nuclear receptor transcription factor that mediates the cellular actions of androgens, the male sex steroids. Androgen-dependent tissues, such as the prostate, rely on androgen action for their development as well as their maintenance in adulthood. This requirement is exploited during systemic therapy of prostate cancer, which is initially an androgen-dependent disease. Indeed, androgen ablation, which prevents the production or blocks the action of androgens, inhibits prostate cancer growth. Invariably, the disease recurs with a phenotype resistant to further hormonal manipulations. However, this so-called androgen depletion-independent prostate cancer remains dependent on a functional AR for growth. Many studies have focused on the mechanistic and structural basis of AR activation with the important goal of understanding how the AR is activated at this stage of the disease. In this review, we summarize how these studies have revealed important functional domains in the AR protein and have provided initial clues to their role in prostate cancer development and progression. A comprehensive understanding of the role and functional relationships between these AR domains could lead to the development of novel AR-directed therapies for prostate cancer.
Collapse
Affiliation(s)
- Scott M Dehm
- Departments of Urology and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street Southwest, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
29
|
Nakauchi H, Matsuda KI, Ochiai I, Kawauchi A, Mizutani Y, Miki T, Kawata M. A differential ligand-mediated response of green fluorescent protein-tagged androgen receptor in living prostate cancer and non-prostate cancer cell lines. J Histochem Cytochem 2007; 55:535-44. [PMID: 17312014 DOI: 10.1369/jhc.6a7064.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Androgen has been shown to promote the proliferation of prostate cancer through the action of the androgen receptor (AR). Mutation (T877A) of the AR gene found in an androgen-sensitive prostate cancer cell line, LNCaP, has been postulated to be involved in hypersensitivity and loss of specificity for androgen. In the present study, trafficking of AR and AR (T877A) in living prostate and non-prostate cancer cell lines under high and low concentrations of androgen and antiandrogen was investigated by tagging green fluorescent protein (GFP) to the receptors. In the presence of a high concentration of androgen, AR-GFP localized in the nucleus by forming discrete clusters in all cell lines. AR (T877A)-GFP was also translocated to the nucleus in LNCaP and COS-1 cells by the addition of a high concentration of androgen. In contrast, in the presence of a low concentration of androgen, the translocation of AR-GFP and AR (T877A)-GFP was observed in LNCaP cells, but not in COS-1 cells. Upon the addition of antiandrogen, AR-GFP was translocated to the nucleus but did not form subnuclear foci in both COS-1 and LNCaP cells, whereas AR (T877A)-GFP in both cells was translocated to the nucleus with subnuclear foci. The present study demonstrates the differential response of nuclear trafficking of AR and its mutant in prostate cancer cell lines and COS cells, and the subcellular and subnuclear compartmentalization provide important information on the sensitivity of the AR mutation.
Collapse
Affiliation(s)
- Hiroo Nakauchi
- Department of Urology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Shao R, Ljungström K, Weijdegård B, Egecioglu E, Fernandez-Rodriguez J, Zhang FP, Thurin-Kjellberg A, Bergh C, Billig H. Estrogen-induced upregulation of AR expression and enhancement of AR nuclear translocation in mouse fallopian tubes in vivo. Am J Physiol Endocrinol Metab 2007; 292:E604-14. [PMID: 17047162 DOI: 10.1152/ajpendo.00350.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Female mice lacking AR display alterations in ovarian and uterine function. However, the biology of AR in the fallopian tube is not fully understood. To gain an insight into potential roles of AR in this tissue, we demonstrated that eCG treatment increased AR expression in a time-dependent manner and subsequent treatment with hCG decreased AR expression in mouse fallopian tubes. This expression pattern was positively associated with 17beta-estradiol and testosterone levels in vivo. Immunohistochemical analysis of fallopian tube epithelial cells revealed that nuclear localization of AR increased in parallel with decreased AR in the cytoplasm following eCG treatment. Moreover, we found that treatment with flutamide upregulated AR expression in immature mice in association with a decrease in serum testosterone levels, whereas the same treatment resulted in downregulation of AR expression in gonadotropin-stimulated mice with concomitant decreases in serum 17beta-estradiol concentrations, suggesting that androgen differs from estrogen in the regulation of AR expression. Furthermore, we demonstrated that DES increased both AR protein expression and nuclear location over a 48-h time course. DHT had rapid effects, with induction of AR expression and translocation at 6 h after injection, but unlike DES it had prolonged efficacy. In addition, we provided direct in vivo evidence that nuclear protein interaction between AR and p21(Cip1), a previously reported AR-regulated gene, was enhanced by gonadotropin stimulation. To our knowledge, this study provides the first demonstration to illustrate that estrogen as a principal regulator may contribute to regulate and activate AR in the fallopian tubes in vivo.
Collapse
Affiliation(s)
- Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Göteborg University, SE-40530 Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rosales T, Georget V, Malide D, Smirnov A, Xu J, Combs C, Knutson JR, Nicolas JC, Royer CA. Quantitative detection of the ligand-dependent interaction between the androgen receptor and the co-activator, Tif2, in live cells using two color, two photon fluorescence cross-correlation spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 36:153-61. [PMID: 17021805 DOI: 10.1007/s00249-006-0095-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 07/31/2006] [Accepted: 08/25/2006] [Indexed: 11/24/2022]
Abstract
Two-photon, two-color fluorescence cross-correlation spectroscopy (TPTCFCCS) was used to directly detect ligand-dependent interaction between an eCFP-fusion of the androgen receptor (eCFP-AR) and an eYFP fusion of the nuclear receptor co-activator, Tif2 (eYFP-Tif2) in live cells. As expected, these two proteins were co-localized in the nucleus in the presence of ligand. Analysis of the cross-correlation amplitude revealed that AR was on average 81% bound to Tif2 in the presence of agonist, whereas the fractional complex formation decreased to 56% in the presence of antagonist. Residual AR-Tif2 interaction in presence of antagonist is likely mediated by its ligand-independent activation function. These studies demonstrate that using TPTCFCCS it is possible to quantify ligand-dependent interaction of nuclear receptors with co-regulator partners in live cells, making possible a vast array of structure-function studies for these important transcriptional regulators.
Collapse
Affiliation(s)
- Tilman Rosales
- Optical Spectroscopy - Section, LBC, NHLBI, NIH, Bethesda, MD 20892-1412, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Moretti C, Odorisio T, Geremia R, Grimaldi P. An uncommon large deletion in the androgen-receptor gene in a XY female with complete androgen insensitivity syndrome. J Endocrinol Invest 2006; 29:457-61. [PMID: 16794370 DOI: 10.1007/bf03344130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Androgen insensitivity is a disorder characterized by an abnormal male sexual development, in which the androgen action is impaired due to structural defects in the androgen receptor gene. We report a case of a 46,XY subject with female phenotype (normal breast and external genitalia) lacking sexual hair, affected with primary amenorrhea. In this patient, we found a deletion of a large region of the androgen receptor gene encoding the steroid-binding domain of the protein, causing a complete inability to bind the androgens. This uncommon molecular defect impaired the expression of androgen-dependent genes inducing the female phenotype.
Collapse
Affiliation(s)
- C Moretti
- Unit of Endocrinology, Department of Internal Medicine, University of Tor Vergata, Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy.
| | | | | | | |
Collapse
|
33
|
Kumar S, Saradhi M, Chaturvedi NK, Tyagi RK. Intracellular localization and nucleocytoplasmic trafficking of steroid receptors: an overview. Mol Cell Endocrinol 2006; 246:147-56. [PMID: 16388893 DOI: 10.1016/j.mce.2005.11.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Subcellular compartmentalization and dynamic movements of steroid receptors are major steps in executing their transcription regulatory function. Though significant progress has been made in understanding the mechanisms underlying nuclear import of NLS-bearing proteins, our general and mechanistic understanding about the nuclear export processes has begun to emerge only recently. The discovery of most commonly utilized CRM1/exportin1 dependent nuclear export pathway is attributed to a potent nuclear export inhibitor leptomycin B that helped dissecting this and other nuclear export pathways. Simultaneously, utilization of green fluorescent protein (GFP)-tagged intracellular steroid receptors has contributed to not only resolving controversial issue of subcellular localization of unliganded hormone receptors but also provided further insight into finer details of receptor dynamics in living cells. With judicious use of leptomycin B and expression of GFP-tagged receptors in living cells, existence of exportin1/CRM1 independent pathway(s), nuclear export signals and receptors for bi-directional translocation that are unique to steroid receptor trafficking have been specified. Currently, we appear to be arriving at a consensus that steroid/nuclear receptors follow dynamic nucleocytoplasmic processes that deviate from the ones commonly utilized by majority of other proteins.
Collapse
Affiliation(s)
- Sanjay Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
34
|
Wolff H, Hadian K, Ziegler M, Weierich C, Kramer-Hammerle S, Kleinschmidt A, Erfle V, Brack-Werner R. Analysis of the influence of subcellular localization of the HIV Rev protein on Rev-dependent gene expression by multi-fluorescence live-cell imaging. Exp Cell Res 2006; 312:443-56. [PMID: 16368434 DOI: 10.1016/j.yexcr.2005.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 10/10/2005] [Accepted: 11/09/2005] [Indexed: 10/21/2022]
Abstract
The human immunodeficiency virus Rev protein is a post-transcriptional activator of HIV gene expression. Rev is a nucleocytoplasmic shuttle protein that displays characteristic nuclear/nucleolar subcellular localization in various cell lines. Cytoplasmic localization of Rev occurs under various conditions disrupting Rev function. The goal of this study was to investigate the relationship between localization of Rev and its functional activity in living cells. A triple-fluorescent imaging assay, called AQ-FIND, was established for automatic quantitative evaluation of nucleocytoplasmic distribution of fluorescently tagged proteins. This assay was used to screen 500 rev genes generated by error-prone PCR for Rev mutants with different localization phenotypes. Activities of the Rev mutants were determined with a second quantitative, dual-fluorescent reporter assay. In HeLa cells, the majority of nuclear Rev mutants had activities similar to wild-type Rev. The activities of Rev mutants with abnormal cytoplasmic localization ranged from moderately impaired to nonfunctional. There was no linear correlation between subcellular distribution and levels of Rev activity. In astrocytes, nuclear Rev mutants showed similar impaired activities as the cytoplasmic wild-type Rev. Our data suggest that steady-state subcellular localization is not a primary regulator of Rev activity but may change as a secondary consequence of altered Rev function. The methodologies described here have potential for studying the significance of subcellular localization for functions of other regulatory factors.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Amino Acid Sequence
- Astrocytes/metabolism
- Astrocytes/virology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cytophotometry/methods
- Cytoplasm/metabolism
- Fatty Acids, Unsaturated/pharmacology
- Gene Expression Regulation, Viral
- Gene Products, gag/metabolism
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, rev/physiology
- HIV/genetics
- HIV/metabolism
- HeLa Cells
- Humans
- Image Processing, Computer-Assisted/methods
- Karyopherins/antagonists & inhibitors
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Molecular Sequence Data
- Mutation/genetics
- Plasmids/genetics
- Protein Precursors/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Sequence Homology, Amino Acid
- Transcriptional Activation/genetics
- Transfection
- Viral Structural Proteins/metabolism
- rev Gene Products, Human Immunodeficiency Virus
- Red Fluorescent Protein
- Exportin 1 Protein
Collapse
Affiliation(s)
- Horst Wolff
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Ingolstaedterlandstr. 1, 85764 Neuherberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Corry GN, Underhill DA. Subnuclear compartmentalization of sequence-specific transcription factors and regulation of eukaryotic gene expression. Biochem Cell Biol 2005; 83:535-47. [PMID: 16094457 DOI: 10.1139/o05-062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein-protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.
Collapse
Affiliation(s)
- Gareth N Corry
- Department of Medical Genetics, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
36
|
Abstract
Nuclear transport of proteins and RNA occurs through the nuclear pore complex and is mediated by a superfamily of transport receptors known collectively as karyopherins. Karyopherins bind to their cargoes by recognition of specific nuclear localization signals or nuclear export signals. Transport through the nuclear pore complex is facilitated by transient interactions between the karyopherins and the nuclear pore complex. The interactions of karyopherins with their cargoes are regulated by the Ras-related GTPase Ran. Ran is assisted in this process by proteins that regulate its GTPase cycle and subcellular localization. In this review, we describe several of the major transport pathways that are conserved in higher and lower eukaryotes, with particular emphasis on the role of Ran. We highlight the latest advances in the structure and function of transport receptors and discuss recent examples of steroid hormone receptor import and regulation by signal transduction pathways. Understanding the molecular basis of nuclear transport may provide insight into human diseases by revealing how nucleocytoplasmic trafficking regulates protein activity.
Collapse
Affiliation(s)
- Lucy F Pemberton
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
37
|
Yang CS, Vitto MJ, Busby SA, Garcia BA, Kesler CT, Gioeli D, Shabanowitz J, Hunt DF, Rundell K, Brautigan DL, Paschal BM. Simian virus 40 small t antigen mediates conformation-dependent transfer of protein phosphatase 2A onto the androgen receptor. Mol Cell Biol 2005; 25:1298-308. [PMID: 15684382 PMCID: PMC548022 DOI: 10.1128/mcb.25.4.1298-1308.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 10/27/2004] [Accepted: 11/11/2004] [Indexed: 01/21/2023] Open
Abstract
The tumor antigens simian virus 40 small t antigen (ST) and polyomavirus small and medium T antigens mediate cell transformation in part by binding to the structural A subunit of protein phosphatase 2A (PP2A). The replacement of B subunits by tumor antigens inhibits PP2A activity and prolongs phosphorylation-dependent signaling. Here we show that ST mediates PP2A A/C heterodimer transfer onto the ligand-activated androgen receptor (AR). Transfer by ST is strictly dependent on the agonist-activated conformation of AR, occurs within minutes of the addition of androgen to cells, and can occur in either the cytoplasm or the nucleus. The binding of ST changes the conformation of the A subunit, and ST rapidly dissociates from the complex upon PP2A A/C heterodimer binding to AR. PP2A is transferred onto the carboxyl-terminal half of AR, and the phosphatase activity is directed to five phosphoserines in the amino-terminal activation function region 1, with a corresponding reduction in transactivation. Thus, ST functions as a transfer factor to specify PP2A targeting in the cell and modulates the transcriptional activity of AR.
Collapse
Affiliation(s)
- Chun-Song Yang
- Center for Cell Signaling, University of Virginia, Box 800577 Health Systems, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|