1
|
Abstract
Heat stress is described as the cumulative detrimental effect caused by an imbalance between heat production within the body and heat dissipation. When cattle are exposed to heat stress with skin surface temperatures exceeding 35 °C, gene networks within and across cells respond to environmental heat loads with both intra and extracellular signals that coordinate cellular and whole-animal metabolism changes to store heat and rapidly increase evaporative heat loss. In this study, we examined evidence from genes known to be associated with heat tolerance (Hsp70, HSF1, HspB8, SOD1, PRLH, ATP1A1, MTOR, and EIF2AK4). This information could serve as valuable resource material for breeding programs aimed at increasing the thermotolerance of cattle.
Collapse
Affiliation(s)
- LuLan Zeng
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Kaixing Qu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Saei Ghare Naz M, Mousavi M, Mahboobifard F, Niknam A, Ramezani Tehrani F. A Meta-Analysis of Observational Studies on Prolactin Levels in Women with Polycystic Ovary Syndrome. Diagnostics (Basel) 2022; 12:2924. [PMID: 36552931 PMCID: PMC9777544 DOI: 10.3390/diagnostics12122924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Women with polycystic ovary syndrome (PCOS) are reported to have different levels of prolactin (PRL) compared to women without PCOS. This study aimed to evaluate the PRL levels in women with PCOS, compared to the control group, before and after adjustment for potential confounders. Using a logical combination of keywords, a comprehensive search was carried out in PubMed and Web of Science, from inception to 30 August 2022. Weighted mean differences (WMDs) with corresponding 95% CIs in PRL levels were employed with a random-effects model. I2 was applied to evaluate heterogeneity among studies. A meta-regression analysis and subgroup analysis were conducted to explore heterogeneity sources. Publication bias was assessed by the Egger test. Thirty-two studies, measuring PRL levels in 8551 PCOS patients according to the Rotterdam criteria and 13,737 controls, were included in the meta-analysis. Pooled effect size suggested that the overall weighted mean difference (WMD) of PRL level was significantly higher in women with PCOS, compared to controls (WMD = 1.01, 95% CI: 0.04-1.98, p = 0.040). The result of meta-regression adjusted for age, BMI, and the continent of origin, revealed no confounding effect on results. Sub-group analysis of PRL levels according to the continent of origin showed significantly higher PRL levels among Eurasian PCOS patients compared to the control; this difference was not statistically significant in the subgroups of women from Asia, Europe, and South America. In conclusion, PRL levels in patients who were diagnosed according to the Rotterdam criteria were significantly higher than non-PCOS participants. Slightly higher levels of PRL could be presented as a diagnostic feature of PCOS.
Collapse
Affiliation(s)
- Marzieh Saei Ghare Naz
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19395-476, Iran
| | - Maryam Mousavi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19395-476, Iran
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-134, Iran
| | - Fatemeh Mahboobifard
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717443, Iran
| | - Atrin Niknam
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19395-476, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19395-476, Iran
| |
Collapse
|
3
|
Usui N, Yoshida M, Takayanagi Y, Nasanbuyan N, Inutsuka A, Kurosu H, Mizukami H, Mori Y, Kuro‐o M, Onaka T. Roles of fibroblast growth factor 21 in the control of depression-like behaviours after social defeat stress in male rodents. J Neuroendocrinol 2021; 33:e13026. [PMID: 34472154 PMCID: PMC9285091 DOI: 10.1111/jne.13026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor 21 (FGF21) modulates energy metabolism and neuroendocrine stress responses. FGF21 synthesis is increased after environmental or metabolic challenges. Detailed roles of FGF21 in the control of behavioural disturbances under stressful conditions remain to be clarified. Here, we examined the roles of FGF21 in the control of behavioural changes after social defeat stress in male rodents. Central administration of FGF21 increased the number of tyrosine hydroxylase-positive catecholaminergic cells expressing c-Fos protein, an activity marker of neurones, in the nucleus tractus solitarius and area postrema. Double in situ hybridisation showed that some catecholaminergic neurones in the dorsal medulla oblongata expressed β-Klotho, an essential co-receptor for FGF21, in male mice. Social defeat stress increased FGF21 concentrations in the plasma of male mice. FGF21-deficient male mice showed social avoidance in a social avoidance test with C57BL/6J mice (background strain of FGF21-deficient mice) and augmented immobility behaviour in a forced swimming test after social defeat stress. On the other hand, overexpression of FGF21 by adeno-associated virus vectors did not significantly change behaviours either in wild-type male mice or FGF21-deficient male mice. The present data are consistent with the view that endogenous FGF21, possibly during the developmental period, has an inhibitory action on stress-induced depression-like behaviour in male rodents.
Collapse
Affiliation(s)
- Naoki Usui
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
- Department of Dentistry, Oral and Maxillofacial SurgeryJichi Medical UniversityShimotsukeJapan
| | - Masahide Yoshida
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Yuki Takayanagi
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Naranbat Nasanbuyan
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Ayumu Inutsuka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Hiroshi Kurosu
- Division of Anti‐aging MedicineCenter for Molecular MedicineJichi Medical UniversityShimotsukeJapan
| | - Hiroaki Mizukami
- Division of Genetic TherapeuticsCenter for Molecular MedicineJichi Medical UniversityShimotsukeJapan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial SurgeryJichi Medical UniversityShimotsukeJapan
| | - Makoto Kuro‐o
- Division of Anti‐aging MedicineCenter for Molecular MedicineJichi Medical UniversityShimotsukeJapan
| | - Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| |
Collapse
|
4
|
Xia C, Qin X, Zhou L, Shi X, Cai T, Xie Y, Li W, Du R, OuYang Y, Yin Z, Hu G. Reproductive Regulation of PrRPs in Teleost: The Link Between Feeding and Reproduction. Front Endocrinol (Lausanne) 2021; 12:762826. [PMID: 34803923 PMCID: PMC8595397 DOI: 10.3389/fendo.2021.762826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Prolactin-releasing peptide (PrRP), a sort of vital hypothalamic neuropeptide, has been found to exert an enormous function on the food intake of mammals. However, little is known about the functional role of PrRP in teleost. In the present study, two PrRP isoforms and four PrRP receptors were isolated from grass carp. Ligand-receptor selectivity displayed that PrRP1 preferentially binds with PrRP-R1a and PrRP-R1b, while PrRP-R2a and PrRP-R2b were special receptors for PrRP2. Tissue distribution indicated that both PrRPs and PrRP-Rs were highly expressed in the hypothalamus-pituitary-gonad axis and intestine, suggesting a latent function on food intake and reproduction. Using grass carp as a model, we found that food intake could significantly induce hypothalamus PrRP mRNA expression, which suggested that PrRP should be also an anorexigenic peptide in teleost. Interestingly, intraperitoneal (IP) injection of PrRPs could significantly induce serum luteinizing hormone (LH) secretion and pituitary LHβ and GtHα mRNA expression in grass carp. Moreover, using primary culture grass carp pituitary cells as a model, we further found that PrRPs could directly induce pituitary LH secretion and synthesis mediated by AC/PKA, PLC/IP3/PKC, and Ca2+/CaM/CaMK-II pathways. Finally, estrogen treatment of prepubertal fish elicited increases in PrRPs and PrPR receptors expression in primary cultured grass carp hypothalamus cells, which further confirmed that the PrRP/PrRPR system may participate in the neuroendocrine control of fish reproduction. These results, taken together, suggest that PrRPs might act as a coupling factor in feeding metabolism and reproductive activities in teleost.
Collapse
Affiliation(s)
- Chuanhui Xia
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Xiangfeng Qin
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Lingling Zhou
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Xuetao Shi
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Tianyi Cai
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Yunyi Xie
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Wei Li
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Ruixin Du
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Yu OuYang
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Zhan Yin, ; Guangfu Hu,
| | - Guangfu Hu
- College of Fisheries, Hubei Province Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Zhan Yin, ; Guangfu Hu,
| |
Collapse
|
5
|
Yu S, Wang G, Liao J, Tang M, Chen J. Identification of differentially expressed genes associated with egg production in black-boned chicken. Br Poult Sci 2020; 61:3-7. [PMID: 32134329 DOI: 10.1080/00071668.2020.1736268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. Muchuan black-bone chicken is well known in China for its meat quality and medicinal properties; however, its egg-laying performance is not ideal. To better understand the molecular mechanisms of black-boned chicken egg-laying, high-throughput RNA sequencing was performed to compare differences in the pituitary transcriptome between three high-rate (group H) and three low-rate (group L) egg production chickens. 2. In total, 171 differentially expressed genes (DEGs) were identified between the two groups, of which 113 were upregulated and 58 were downregulated in group L. Some of these genes are known to be related to hormone secretion or the regulation of reproductive processes; these include prolactin-releasing hormone (PRLH), distal-less homeobox 6 (DLX6), interferon regulatory factor 4 (IRF4), and cilia and flagella associated protein 69 (CFAP69). Notably, expression pattern analysis indicated that both PRLH and DLX6 may influence egg-laying performance. 3. The dataset provided a foundation for discovering important genes and pathways involved in the chicken egg-laying process, and may help to improve understanding of the molecular mechanisms of chicken reproduction.
Collapse
Affiliation(s)
- S Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - G Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - M Tang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| |
Collapse
|
6
|
Prolactin-Releasing Peptide: Physiological and Pharmacological Properties. Int J Mol Sci 2019; 20:ijms20215297. [PMID: 31653061 PMCID: PMC6862262 DOI: 10.3390/ijms20215297] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) belongs to the large RF-amide neuropeptide family with a conserved Arg-Phe-amide motif at the C-terminus. PrRP plays a main role in the regulation of food intake and energy expenditure. This review focuses not only on the physiological functions of PrRP, but also on its pharmacological properties and the actions of its G-protein coupled receptor, GPR10. Special attention is paid to structure-activity relationship studies on PrRP and its analogs as well as to their effect on different physiological functions, mainly their anorexigenic and neuroprotective features and the regulation of the cardiovascular system, pain, and stress. Additionally, the therapeutic potential of this peptide and its analogs is explored.
Collapse
|
7
|
Wall KD, Olivos DR, Rinaman L. High Fat Diet Attenuates Cholecystokinin-Induced cFos Activation of Prolactin-Releasing Peptide-Expressing A2 Noradrenergic Neurons in the Caudal Nucleus of the Solitary Tract. Neuroscience 2019; 447:113-121. [PMID: 31518655 DOI: 10.1016/j.neuroscience.2019.08.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
Cholecystokinin (CCK) released from the small intestine increases the activity of vagal afferents that relay satiety signals to the caudal nucleus of the solitary tract (cNTS). A caudal subset of A2 noradrenergic neurons within the cNTS that express prolactin-releasing peptide (PrRP) have been proposed to mediate CCK-induced satiety. However, the ability of exogenous CCK to activate cFos expression by PrRP neurons has only been reported in rats and mice after a very high dose (i.e., 50 μg/kg BW) that also activates the hypothalamic-pituitary-adrenal stress axis. The present study examined the ability of a much lower CCK dose (1.0 µg/kg BW, i.p) to activate PrRP-positive neurons in the rat cNTS. We further examined whether maintenance of rats on high fat diet (HFD; 45% kcal from fat) alters CCK-induced activation of PrRP neurons, since HFD blunts the ability of CCK to suppress food intake. Rats maintained on HFD for 7 weeks consumed more kcal and gained more BW compared to rats maintained on Purina chow (13.5% kcal from fat). CCK-treated rats displayed increased numbers of cFos-positive cNTS neurons compared to non-injected and saline-injected controls, with no effect of diet. In chow-fed rats, a significantly larger proportion of PrRP neurons were activated after CCK treatment compared to controls; conversely, CCK did not increase PrRP neuronal activation in HFD-fed rats. Collectively, these results indicate that a relatively low dose of exogenous CCK is sufficient to activate PrRP neurons in chow-fed rats, and that this effect is blunted in rats maintained for several weeks on HFD.
Collapse
Affiliation(s)
- Kaylee D Wall
- Florida State University, Department of Psychology and Program in Neuroscience, Tallahassee, FL, USA
| | - Diana R Olivos
- University of Pittsburgh, Department of Neuroscience, Dietrich School of Arts and Sciences, Pittsburgh, PA, USA
| | - Linda Rinaman
- Florida State University, Department of Psychology and Program in Neuroscience, Tallahassee, FL, USA.
| |
Collapse
|
8
|
Wegener C, Hasan G. ER-Ca2+ sensor STIM regulates neuropeptides required for development under nutrient restriction in Drosophila. PLoS One 2019; 14:e0219719. [PMID: 31295329 PMCID: PMC6622525 DOI: 10.1371/journal.pone.0219719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022] Open
Abstract
Neuroendocrine cells communicate via neuropeptides to regulate behaviour and physiology. This study examines how STIM (Stromal Interacting Molecule), an ER-Ca2+ sensor required for Store-operated Ca2+ entry, regulates neuropeptides required for Drosophila development under nutrient restriction (NR). We find two STIM-regulated peptides, Corazonin and short Neuropeptide F, to be required for NR larvae to complete development. Further, a set of secretory DLP (Dorso lateral peptidergic) neurons which co-express both peptides was identified. Partial loss of dSTIM caused peptide accumulation in the DLPs, and reduced systemic Corazonin signalling. Upon NR, larval development correlated with increased peptide levels in the DLPs, which failed to occur when dSTIM was reduced. Comparison of systemic and cellular phenotypes associated with reduced dSTIM, with other cellular perturbations, along with genetic rescue experiments, suggested that dSTIM primarily compromises neuroendocrine function by interfering with neuropeptide release. Under chronic stimulation, dSTIM also appears to regulate neuropeptide synthesis.
Collapse
Affiliation(s)
- Christian Wegener
- Department of Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Am Hubland, Würzburg, Germany
| | - Gaiti Hasan
- National Centre For Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| |
Collapse
|
9
|
Holubová M, Zemenová J, Mikulášková B, Panajotova V, Stöhr J, Haluzík M, Kuneš J, Železná B, Maletínská L. Palmitoylated PrRP analog decreases body weight in DIO rats but not in ZDF rats. J Endocrinol 2016; 229:85-96. [PMID: 26906745 DOI: 10.1530/joe-15-0519] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 12/30/2022]
Abstract
Anorexigenic neuropeptides produced and acting in the brain have the potential to decrease food intake and ameliorate obesity, but are ineffective after peripheral application, owing to a limited ability to cross the blood-brain barrier. We have designed lipidized analogs of prolactin-releasing peptide (PrRP), which is involved in energy balance regulation as demonstrated by obesity phenotypes of both Prrp-knockout and Prrp receptor-knockout mice. The aim of this study was to characterize the subchronic effect of a palmitoylated PrRP analog in two rat models of obesity and diabetes: diet-induced obese Sprague-Dawley rats and leptin receptor-deficient Zucker diabetic (ZDF) rats. In the rats with diet-induced obesity (DIO), a two-week intraperitoneal treatment with palmitoylated PrRP lowered food intake by 24% and body weight by 8%. This treatment also improved glucose tolerance and tended to decrease leptin levels and adipose tissue masses in a dose-dependent manner. In contrast, in ZDF rats, the same treatment with palmitoylated PrRP lowered food intake but did not significantly affect body weight or glucose tolerance, probably in consequence of severe leptin resistance due to a nonfunctional leptin receptor. Our data indicate a good efficacy of lipidized PrRP in DIO rats. Thus, the strong anorexigenic, body weight-reducing, and glucose tolerance-improving effects make palmitoylated PrRP an attractive candidate for anti-obesity treatment.
Collapse
Affiliation(s)
- Martina Holubová
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jana Zemenová
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic Department of Analytical ChemistryUniversity of Chemistry and Technology, Prague, Czech Republic
| | - Barbora Mikulášková
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic Institute of PhysiologyAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | - Martin Haluzík
- First Faculty of MedicineCharles University, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic Institute of PhysiologyAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
10
|
Quillet R, Ayachi S, Bihel F, Elhabazi K, Ilien B, Simonin F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol Ther 2016; 160:84-132. [PMID: 26896564 DOI: 10.1016/j.pharmthera.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Safia Ayachi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Bihel
- Laboratoire Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Illkirch, France
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Brigitte Ilien
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
11
|
Identification of G Protein-Coupled Receptors (GPCRs) in Primary Cilia and Their Possible Involvement in Body Weight Control. PLoS One 2015; 10:e0128422. [PMID: 26053317 PMCID: PMC4459993 DOI: 10.1371/journal.pone.0128422] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/27/2015] [Indexed: 11/30/2022] Open
Abstract
Primary cilia are sensory organelles that harbor various receptors such as G protein-coupled receptors (GPCRs). We analyzed subcellular localization of 138 non-odorant GPCRs. We transfected GPCR expression vectors into NIH3T3 cells, induced ciliogenesis by serum starvation, and observed subcellular localization of GPCRs by immunofluorescent staining. We found that several GPCRs whose ligands are involved in feeding behavior, including prolactin-releasing hormone receptor (PRLHR), neuropeptide FF receptor 1 (NPFFR1), and neuromedin U receptor 1 (NMUR1), localized to the primary cilia. In addition, we found that a short form of dopamine receptor D2 (DRD2S) is efficiently transported to the primary cilia, while a long form of dopamine receptor D2 (DRD2L) is rarely transported to the primary cilia. Using an anti-Prlhr antibody, we found that Prlhr localized to the cilia on the surface of the third ventricle in the vicinity of the hypothalamic periventricular nucleus. We generated the Npy2r-Cre transgenic mouse line in which Cre-recombinase is expressed under the control of the promoter of Npy2r encoding a ciliary GPCR. By mating Npy2r-Cre mice with Ift80 flox mice, we generated Ift80 conditional knockout (CKO) mice in which Npy2r-positive cilia were diminished in number. We found that Ift80 CKO mice exhibited a body weight increase. Our results suggest that Npy2r-positive cilia are important for body weight control.
Collapse
|
12
|
Differential activation of chemically identified neurons in the caudal nucleus of the solitary tract in non-entrained rats after intake of satiating vs. non-satiating meals. Physiol Behav 2014; 136:47-54. [PMID: 24508750 DOI: 10.1016/j.physbeh.2014.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/11/2013] [Accepted: 01/20/2014] [Indexed: 12/13/2022]
Abstract
Satiety signals arising from the gastrointestinal (GI) tract and related digestive organs during food ingestion and digestion are conveyed by vagal sensory afferents to the hindbrain nucleus of the solitary tract (NST). Two intermingled but chemically distinct NST neuronal populations have been implicated in meal size control: noradrenergic (NA) neurons that comprise the A2 cell group, and glucagon-like peptide-1 (GLP-1)-positive neurons. Previous results indicate that A2 neurons are activated in a meal size-dependent manner in rats that have been acclimated/entrained to a feeding schedule in order to increase meal size, whereas feeding under the same conditions does not activate GLP-1 neurons. The present study was designed to test the hypothesis that both A2 and GLP-1 neuronal populations are recruited in non-entrained rats after voluntary first-time intake of an unrestricted, satiating volume of liquid Ensure. DBH-positive A2 neurons within the caudal visceral NST were progressively recruited to express cFos in rats that consumed progressively larger volumes of Ensure. Among these DBH-positive neurons, the prolactin-releasing peptide (PrRP)-positive subset was more sensitive to feeding-induced activation than the PrRP-negative subset. Notably, significant activation of GLP-1-positive neurons occurred only in rats that consumed the largest volumes of Ensure, corresponding to nearly 5% of their BW. We interpret these results as evidence that progressive recruitment of NA neurons within the caudal NST, especially the most caudally-situated PrRP-positive subset, effectively "tracks" the magnitude of GI satiety signals and other meal-related sensory feedback. Conversely, GLP-1 neurons may only be recruited in response to the homeostatic challenge of consuming a very large, unanticipated meal.
Collapse
|
13
|
Yamashita M, Takayanagi Y, Yoshida M, Nishimori K, Kusama M, Onaka T. Involvement of prolactin-releasing peptide in the activation of oxytocin neurones in response to food intake. J Neuroendocrinol 2013; 25:455-65. [PMID: 23363338 PMCID: PMC3664423 DOI: 10.1111/jne.12019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/10/2012] [Accepted: 12/26/2012] [Indexed: 12/16/2022]
Abstract
Food intake activates neurones expressing prolactin-releasing peptide (PrRP) in the medulla oblongata and oxytocin neurones in the hypothalamus. Both PrRP and oxytocin have been shown to have an anorexic action. In the present study, we investigated whether the activation of oxytocin neurones following food intake is mediated by PrRP. We first examined the expression of PrRP receptors (also known as GPR10) in rats. Immunoreactivity of PrRP receptors was observed in oxytocin neurones and in vasopressin neurones in the paraventricular and supraoptic nuclei of the hypothalamus and in the bed nucleus of the stria terminalis. Application of PrRP to isolated supraoptic nuclei facilitated the release of oxytocin and vasopressin. In mice, re-feeding increased the expression of Fos protein in oxytocin neurones of the hypothalamus and bed nucleus of the stria terminalis. The increased expression of Fos protein in oxytocin neurones following re-feeding or i.p. administration of cholecystokinin octapeptide (CCK), a peripheral satiety factor, was impaired in PrRP-deficient mice. CCK-induced oxytocin increase in plasma was also impaired in PrRP-deficient mice. Furthermore, oxytocin receptor-deficient mice showed an increased meal size, as reported in PrRP-deficient mice and in CCKA receptor-deficient mice. These findings suggest that PrRP mediates, at least in part, the activation of oxytocin neurones in response to food intake, and that the CCK-PrRP-oxytocin pathway plays an important role in the control of the termination of each meal.
Collapse
Affiliation(s)
- M Yamashita
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Japan
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Maniscalco JW, Kreisler AD, Rinaman L. Satiation and stress-induced hypophagia: examining the role of hindbrain neurons expressing prolactin-releasing Peptide or glucagon-like Peptide 1. Front Neurosci 2013; 6:199. [PMID: 23346044 PMCID: PMC3549516 DOI: 10.3389/fnins.2012.00199] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/31/2012] [Indexed: 12/20/2022] Open
Abstract
Neural circuits distributed within the brainstem, hypothalamus, and limbic forebrain interact to control food intake and energy balance under normal day-to-day conditions, and in response to stressful conditions under which homeostasis is threatened. Experimental studies using rats and mice have generated a voluminous literature regarding the functional organization of circuits that inhibit food intake in response to satiety signals, and in response to stress. Although the central neural bases of satiation and stress-induced hypophagia often are studied and discussed as if they were distinct, we propose that both behavioral states are generated, at least in part, by recruitment of two separate but intermingled groups of caudal hindbrain neurons. One group comprises a subpopulation of noradrenergic (NA) neurons within the caudal nucleus of the solitary tract (cNST; A2 cell group) that is immunopositive for prolactin-releasing peptide (PrRP). The second group comprises non-adrenergic neurons within the cNST and nearby reticular formation that synthesize glucagon-like peptide 1 (GLP-1). Axonal projections from PrRP and GLP-1 neurons target distributed brainstem and forebrain regions that shape behavioral, autonomic, and endocrine responses to actual or anticipated homeostatic challenge, including the challenge of food intake. Evidence reviewed in this article supports the view that hindbrain PrRP and GLP-1 neurons contribute importantly to satiation and stress-induced hypophagia by modulating the activity of caudal brainstem circuits that control food intake. Hindbrain PrRP and GLP-1 neurons also engage hypothalamic and limbic forebrain networks that drive parallel behavioral and endocrine functions related to food intake and homeostatic challenge, and modulate conditioned and motivational aspects of food intake.
Collapse
Affiliation(s)
- James W Maniscalco
- Department of Neuroscience, University of Pittsburgh Pittsburgh, PA, USA
| | | | | |
Collapse
|
16
|
Dodd GT, Luckman SM. Physiological Roles of GPR10 and PrRP Signaling. Front Endocrinol (Lausanne) 2013; 4:20. [PMID: 23467899 PMCID: PMC3587801 DOI: 10.3389/fendo.2013.00020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/19/2013] [Indexed: 12/28/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) was first isolated from bovine hypothalamus, and was found to act as an endogenous ligand at the G-protein-coupled receptor 10 (GPR10 or hGR3). Although originally named as it can affect the secretion of prolactin from anterior pituitary cells, the potential functions for this peptide have been greatly expanded over the past decade. Anatomical, pharmacological, and physiological studies indicate that PrRP, signaling via the GPR10 receptor, may have a wide range of roles in neuroendocrinology; such as in energy homeostasis, stress responses, cardiovascular regulation, and circadian function. This review will provide the current knowledge of the PrRP and GPR10 signaling system, its putative functions, implications for therapy, and future perspectives.
Collapse
Affiliation(s)
- Garron T. Dodd
- Faculty of Life Sciences, AV Hill Building, University of ManchesterManchester, UK
| | - Simon M. Luckman
- Faculty of Life Sciences, AV Hill Building, University of ManchesterManchester, UK
- *Correspondence: Simon M. Luckman, Faculty of Life Sciences, AV Hill Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK. e-mail:
| |
Collapse
|
17
|
Csabafi K, Jászberényi M, Bagosi Z, Lipták N, Telegdy G. Effects of kisspeptin-13 on the hypothalamic-pituitary-adrenal axis, thermoregulation, anxiety and locomotor activity in rats. Behav Brain Res 2012; 241:56-61. [PMID: 23219969 DOI: 10.1016/j.bbr.2012.11.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/26/2012] [Indexed: 01/19/2023]
Abstract
Kisspeptin is a mammalian amidated neurohormone, which belongs to the RF-amide peptide family and is known for its key role in reproduction. However, in contrast with the related members of the RF-amide family, little information is available regarding its role in the stress-response. With regard to the recent data suggesting kisspeptin neuronal projections to the paraventricular nucleus, in the present experiments we investigated the effect of kisspeptin-13 (KP-13), an endogenous derivative of kisspeptin, on the hypothalamus-pituitary-adrenal (HPA) axis, motor behavior and thermoregulatory function. The peptide was administered intracerebroventricularly (icv.) in different doses (0.5-2 μg) to adult male Sprague-Dawley rats, the behavior of which was then observed by means of telemetry, open field and elevated plus maze tests. Additionally, plasma concentrations of corticosterone were measured in order to assess the influence of KP-13 on the HPA system. The effects on core temperature were monitored continuously via telemetry. The results demonstrated that KP-13 stimulated the horizontal locomotion (square crossing) in the open field test and decreased the number of entries into and the time spent in the open arms during the elevated plus maze tests. The peptide also caused marked elevations in the spontaneous locomotor activity and the core temperature recorded by the telemetric system, and significantly increased the basal corticosterone level. In conclusion, our data indicate that icv. administered KP-13 stimulates the HPA axis, induces hyperthermia, activates motor behavior and causes anxiety in rats.
Collapse
Affiliation(s)
- Krisztina Csabafi
- Department of Pathophysiology, University of Szeged, PO Box 427, H-6701 Szeged, Hungary.
| | | | | | | | | |
Collapse
|
18
|
Molecular characterization and haplotype combination of PrRP gene polymorphism and its association with production traits in Chinese native goats. Small Rumin Res 2012. [DOI: 10.1016/j.smallrumres.2012.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Laguna-Abreu MTC, Germano C, Moreira AC, Antunes-Rodrigues J, Elias L, Castro M. Changes in prolactin secretion in the short- and long-term after adrenalectomy. ACTA ACUST UNITED AC 2012; 56:244-9. [DOI: 10.1590/s0004-27302012000400005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 06/02/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVE: To evaluate the modulation of the hypothalamus-pituitary-adrenal axis (HPA) on prolactin secretion in rats after adrenalectomy (ADX). MATERIALS AND METHODS: Plasma corticosterone, ACTH, and prolactin concentrations were measured by radioimmunoassay in rats after bilateral ADX in the short- (3 hours and 1day) and long-term (3, 7, and 14 days). RESULTS: Animals that underwent ADX showed undetectable corticosterone levels and a triphasic ACTH response with a transient increase (3h), a decrease (1d), and further increase in the long-term after ADX. Sham animals showed a marked increase in corticosterone and ACTH levels three hours after surgery, with a decrease to basal levels thereafter. Plasma prolactin levels were not changed after ADX. CONCLUSION: There are different points of equilibrium in the HPA axis after the glucocorticoid negative feedback is removed. Prolactin plasma secretion is not altered in the short or long- term after ADX, suggesting that the peptidergic neurons essential for prolactin release are not activated after ADX.
Collapse
|
20
|
Wang Y, Wang CY, Wu Y, Huang G, Li J, Leung FC. Identification of the receptors for prolactin-releasing peptide (PrRP) and Carassius RFamide peptide (C-RFa) in chickens. Endocrinology 2012; 153:1861-74. [PMID: 22355069 DOI: 10.1210/en.2011-1719] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prolactin-releasing peptide (PrRP) and its structurally related peptide, Carassius Arg-Phe-amide peptide (C-RFa), have been reported to play similar roles in regulating food intake and pituitary functions in vertebrates. However, the identity, functionality, and expression of the receptor(s) for PrRP and C-RFa remain largely unknown in nonmammalian vertebrates, including birds. In this study, three receptors homologous to mammalian PrRP receptor (PrRPR), named cPrRPR1, cPrRPR2, and cC-RFaR, respectively, were cloned from chicken brain by RT-PCR. Using a pGL3-NFAT-RE-luciferase reporter system, we demonstrated that cPrRPR1 and cPrRPR2 expressed in Chinese hamster ovarian cells could be activated by cPrRP₂₀ and cC-RFa₂₀ potently, whereas cC-RFaR could only be activated effectively by cC-RFa₂₀ (EC₅₀, 0.11 nM), indicating that cPrRPR1 and cPrRPR2 can function as common receptors for PrRP and C-RFa, whereas cC-RFaR is a receptor specific to C-RFa. Using a pGL3-CRE-luciferase reporter system, cPrRPR1, cPrRPR2, and cC-RFaR expressed in Chinese hamster ovarian cells were also shown to activate intracellular protein kinase A signaling pathway upon cC-RFa₂₀ treatment (100 nM). Moreover, RT-PCR assay revealed that cPrRPR1, cPrRPR2, and cC-RFaR were widely expressed in most adult chicken tissues examined, including various regions of brain. These findings, together with evidence of PrRP and C-RFa encoded by separate genes in chicken, Xenopus, and zebrafish, and the differential expression of PrRP and C-RFa genes in chicken tissues, strongly suggest that PrRP and C-RFa may play similar yet distinctive roles in nonmammalian vertebrates, including chicken, and their actions are mediated by common receptor(s) or a specific C-RFa receptor.
Collapse
Affiliation(s)
- Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, School of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
21
|
Onaka T, Takayanagi Y, Yoshida M. Roles of oxytocin neurones in the control of stress, energy metabolism, and social behaviour. J Neuroendocrinol 2012; 24:587-98. [PMID: 22353547 DOI: 10.1111/j.1365-2826.2012.02300.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxytocin neurones are activated by stressful stimuli, food intake and social attachment. Activation of oxytocin neurones in response to stressful stimuli or food intake is mediated, at least in part, by noradrenaline/prolactin-releasing peptide (PrRP) neurones in the nucleus tractus solitarius, whereas oxytocin neurones are activated after social stimuli via medial amygdala neurones. Activation of oxytocin neurones induces the release of oxytocin not only from their axon terminals, but also from their dendrites. Oxytocin acts locally where released or diffuses and acts on remote oxytocin receptors widely distributed within the brain, resulting in anxiolytic, anorexic and pro-social actions. The action sites of oxytocin appear to be multiple. Oxytocin shows anxiolytic actions, at least in part, via serotoninergic neurones in the median raphe nucleus, has anorexic actions via pro-opiomelanocortin neurones in the nucleus tractus solitarius and facilitates social recognition via the medial amygdala. Stress, obesity and social isolation are major risk factors for mortality in humans. Thus, the oxytocin-oxytocin receptor system is a therapeutic target for the promotion of human health.
Collapse
Affiliation(s)
- T Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shinotsuke-shi, Tochigi-ken, Japan.
| | | | | |
Collapse
|
22
|
Prolactin concentrations in newly diagnosed, antipsychotic-naïve patients with nonaffective psychosis. Schizophr Res 2012; 134:16-9. [PMID: 21831600 PMCID: PMC4185192 DOI: 10.1016/j.schres.2011.07.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND Previous studies have found increased prolactin concentrations in antipsychotic-naïve patients with schizophrenia. However, the roles of other hormones, and of potentially confounding variables such as gender and smoking, have not been considered. METHODS Blood from newly diagnosed, antipsychotic-naïve patients with nonaffective psychosis (13 women and 20 men) and matched controls (12 women and 21 men) was assayed for prolactin, as well as three other hormones that impact prolactin concentrations: thyrotropin-stimulating hormone (TSH), ghrelin, and cortisol. RESULTS Patients had significantly higher prolactin concentrations: female patients had a mean [SD] of 37.1 ng/mL [24.9] vs. 13.5 ng/mL [7.2] for female control subjects (p=.001), while male patients had a mean of 15.3 ng/mL [9.5] vs. 7.6 ng/mL [2.2] for male control subjects (p=.006). Patients and control subjects did not differ on concentrations of TSH, ghrelin, or cortisol. The group differences could not be attributed to differences in age, gender, smoking, body mass index, ethnicity, or the socioeconomic status of the family of origin. CONCLUSIONS Increased prolactin concentrations in antipsychotic-naïve patients do not appear to be due to important confounding variables, or to the effects of elevated TSH, ghrelin, or cortisol.
Collapse
|
23
|
Díaz-Morán S, Palència M, Mont-Cardona C, Cañete T, Blázquez G, Martínez-Membrives E, López-Aumatell R, Tobeña A, Fernández-Teruel A. Coping style and stress hormone responses in genetically heterogeneous rats: comparison with the Roman rat strains. Behav Brain Res 2011; 228:203-10. [PMID: 22178313 DOI: 10.1016/j.bbr.2011.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/27/2011] [Accepted: 12/02/2011] [Indexed: 01/22/2023]
Abstract
The purpose of the present study was to evaluate for the first time the stress-induced hypothalamus-pituitary-adrenal (HPA), adrenocorticotropic hormone (ACTH), corticosterone and prolactin responses of the National Institutes of Health genetically heterogeneous rat stock (N/Nih-HS rats) in comparison with responses of the relatively high and low stress-prone Roman Low- (RLA-I) and High-Avoidance (RHA-I) rat strains. The same rats were also compared (experiment 1) with respect to their levels of unconditioned anxiety (elevated zero-maze test), novelty-induced exploratory behavior, conditioned fear and two-way active avoidance acquisition. In experiment 2, naive rats from these three strains/stocks were evaluated for "depressive-like" behavior in the forced swimming test. N/Nih-HS and RLA-I rats showed significantly higher post-stress ACTH, corticosterone and prolactin levels than RHA-I rats. N/Nih-HS rats also presented the highest context-conditioned freezing responses, extremely poor two-way avoidance acquisition and very low novelty-induced exploratory behavior. Experiment 2 showed that, compared to RHA-I rats, N/Nih-HS and RLA-I rats displayed significantly less struggling (escape-directed) and increased immobility responses in the forced swimming test. Factor analysis of data from experiment 1 showed associations among behavioral and hormonal responses, with a first factor comprising high loadings of elevated zero-maze variables and lower loadings of conditioned fear, two-way avoidance acquisition and hormonal measures, while a second factor mainly grouped conditioned fear and two-way avoidance acquisition with novelty-induced exploration and post-stress prolactin. Thus, regarding their anxiety/fearfulness, passive coping style, "depressive-like" and stress-induced hormonal responses the N/Nih-HS rats resemble the phenotype profiles of the relatively high-anxious and stress-prone RLA-I rat strain.
Collapse
Affiliation(s)
- Sira Díaz-Morán
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lennartsson AK, Jonsdottir IH. Prolactin in response to acute psychosocial stress in healthy men and women. Psychoneuroendocrinology 2011; 36:1530-9. [PMID: 21621331 DOI: 10.1016/j.psyneuen.2011.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 04/18/2011] [Accepted: 04/18/2011] [Indexed: 01/28/2023]
Abstract
BACKGROUND Serum levels of the anterior pituitary hormone prolactin have been reported to increase in response to different types of psychological stressors in humans. However, experimental laboratory stress studies investigating the acute response of prolactin to psychological stress show inconsistent results as increased, as well as decreased or unchanged levels of prolactin have been reported. OBJECTIVE The aim of this study was to investigate the effect of acute psychosocial stress on serum concentrations of prolactin in healthy men and women and possible sex differences. METHOD Thirty men and 15 women (age 30-50 years) underwent Trier Social Stress Test (TSST), a tool for investigating psychobiological stress responses in a laboratory setting. Blood samples were collected before and directly after the stress test and after 30 min of recovery. RESULTS We observed significantly elevated prolactin levels - along with significantly increased plasma adrenocorticotropic hormone (ACTH), serum cortisol, heart rate, systolic blood pressure (SBP), and diastolic blood pressure (DBP) - in response to the stressor. The prolactin response pattern did not differ between men and women, but there was some indication that women might have higher magnitude of response. Large individual differences regarding the magnitude of response were seen in general. The magnitude of the prolactin response was significantly related to the magnitude of the response of the hypothalamic-pituitary-adrenal (HPA) axis and, to some extent, the cardiovascular responses, indicating that individual differences in prolactin response in healthy men and women are dependent on the general physiological stress activation. In women, the magnitude of response was also related to estradiol level. CONCLUSION Prolactin does increase in response to psychosocial stress, however, with large individual variation in magnitude of response. The pattern of prolactin response does not differ between men and women. However, there was some indication that women might have higher magnitude of increase than men, and that the magnitude of response in women was dependent on estradiol levels, and this needs to be further studied.
Collapse
|
25
|
Differential gene expression between inbred Roman high- (RHA-I) and low- (RLA-I) avoidance rats. Neurosci Lett 2011; 504:265-70. [DOI: 10.1016/j.neulet.2011.09.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/10/2011] [Accepted: 09/19/2011] [Indexed: 11/18/2022]
|
26
|
Maletínská L, Spolcová A, Maixnerová J, Blechová M, Zelezná B. Biological properties of prolactin-releasing peptide analogs with a modified aromatic ring of a C-terminal phenylalanine amide. Peptides 2011; 32:1887-92. [PMID: 21872625 DOI: 10.1016/j.peptides.2011.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/11/2011] [Accepted: 08/11/2011] [Indexed: 11/21/2022]
Abstract
Prolactin-releasing peptide (PrRP)-induced secretion of prolactin is not currently considered a primary function of PrRP, but the development of late-onset obesity in both PrRP and PrRP receptor knock-out mice indicates the unique anorexigenic properties of PrRP. In our recent study, we showed comparable potencies of peptides PrRP31 and PrRP20 in binding, intracellular signaling and prolactin release in pituitary RC-4B/C cells, and anorexigenic effect after central administration in fasted mice. In the present study, eight analogs of PrRP20 with C-terminal Phe amide modified with a bulky side chain or a halogenated aromatic ring revealed high binding potency, activation of mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK1/2) and cAMP response element-binding protein (CREB) and prolactin release in RC-4B/C cells. In particular, [PheNO(2)(31)]PrRP20, [1-Nal(31)]PrRP20, [2-Nal(31)]PrRP20 and [Tyr(31)]PrRP20 showed not only in vitro effects comparable or higher than those of PrRP20, but also a very significant and long-lasting anorexigenic effect after central administration in fasted mice. The design of potent and long-lasting PrRP analogs with selective anorexigenic properties promises to contribute to the study of food intake disorders.
Collapse
Affiliation(s)
- Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Flemingovo nám. 2, Prague 6, Czech Republic.
| | | | | | | | | |
Collapse
|
27
|
Maixnerová J, Špolcová A, Pýchová M, Blechová M, Elbert T, Rezáčová M, Zelezná B, Maletínská L. Characterization of prolactin-releasing peptide: binding, signaling and hormone secretion in rodent pituitary cell lines endogenously expressing its receptor. Peptides 2011; 32:811-7. [PMID: 21185342 DOI: 10.1016/j.peptides.2010.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/06/2010] [Accepted: 12/14/2010] [Indexed: 11/24/2022]
Abstract
The recently discovered prolactin-releasing peptide (PrRP) binds to the PrRP receptor and is involved in endocrine regulation and energy metabolism. However, its main physiological role is currently unknown. Two biologically active isoforms of PrRP exist: the 31 (PrRP31) and the 20 (PrRP20) amino acid forms, which both contain a C-terminal Phe amide sequence. In the present study, the PrRP receptor was immunodetected in three rodent tumor pituitary cell lines: GH3, AtT20 and RC-4B/C cells. The saturation binding of radioiodinated PrRP31 to intact cells demonstrated a K(d) in the 10(-9)M range and a B(max) in the range of tens of thousands binding sites per cell. For binding to RC-4B/C cells, both PrRP31 and PrRP20 competed with (125)I-PrRP31 with a similar K(i). The C-terminal analog PrRP13 showed lower binding potency compared to PrRP31 and PrRP20. All PrRP analogs increased the phosphorylation of MAPK/ERK1/2 (mitogen-activated phosphorylase/extracellular-regulated kinase) and CREB (cAMP response element-binding protein) in RC-4B/C cells. Additionally, prolactin release was induced by the PrRP analogs in a dose-dependent manner in RC-4B/C cells. Finally, food intake after intracerebroventricular administration of PrRP analogs in fasted mice was followed. Both PrRP31 and PrRP20 decreased food intake, but PrRP13 did not show significant effect. Studies on pituitary cell lines expressing the PrRP receptor are more physiologically relevant than those on cells transfected with the receptor. This cell type can be used as a model system for pharmacological studies searching for PrRP antagonists and stable effective PrRP agonists, as these drugs may have potential as anti-obesity agents.
Collapse
Affiliation(s)
- Jana Maixnerová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Prolactin-releasing peptide enhances synaptic transmission in rat thalamus. Neuroscience 2011; 172:1-11. [DOI: 10.1016/j.neuroscience.2010.10.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/14/2010] [Accepted: 10/29/2010] [Indexed: 11/21/2022]
|
29
|
Takayanagi Y, Onaka T. Roles of prolactin-releasing peptide and RFamide related peptides in the control of stress and food intake. FEBS J 2010; 277:4998-5005. [DOI: 10.1111/j.1742-4658.2010.07932.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|