1
|
Konvalinková D, Dolníček F, Hovorková M, Červený J, Kundrát O, Pelantová H, Petrásková L, Cvačka J, Faizulina M, Varghese B, Kovaříček P, Křen V, Lhoták P, Bojarová P. Glycocalix[4]arenes and their affinity to a library of galectins: the linker matters. Org Biomol Chem 2023; 21:1294-1302. [PMID: 36647793 DOI: 10.1039/d2ob02235d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Galectins are lectins that bind β-galactosides. They are involved in important extra- and intracellular biological processes such as apoptosis, and regulation of the immune system or the cell cycle. High-affinity ligands of galectins may introduce new therapeutic approaches or become new tools for biomedical research. One way of increasing the low affinity of β-galactoside ligands to galectins is their multivalent presentation, e.g., using calixarenes. We report on the synthesis of glycocalix[4]arenes in cone, partial cone, 1,2-alternate, and 1,3-alternate conformations carrying a lactosyl ligand on three different linkers. The affinity of the prepared compounds to a library of human galectins was determined using competitive ELISA assay and biolayer interferometry. Structure-affinity relationships regarding the influence of the linker and the core structure were formulated. Substantial differences were found between various linker lengths and the position of the triazole unit. The formation of supramolecular clusters was detected by atomic force microscopy. The present work gives a systematic insight into prospective galectin ligands based on the calix[4]arene core.
Collapse
Affiliation(s)
- Dorota Konvalinková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| | - František Dolníček
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Michaela Hovorková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic. .,Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843 Prague 2, Czech Republic
| | - Jakub Červený
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic. .,Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Ondřej Kundrát
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
| | - Margarita Faizulina
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Beena Varghese
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Petr Kovaříček
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| | - Pavel Lhoták
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-16628 Praha 6, Czech Republic.
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic. .,Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, CZ-272 01 Kladno, Czech Republic
| |
Collapse
|
2
|
Calixarenes: Generalities and Their Role in Improving the Solubility, Biocompatibility, Stability, Bioavailability, Detection, and Transport of Biomolecules. Biomolecules 2019; 9:biom9030090. [PMID: 30841659 PMCID: PMC6468619 DOI: 10.3390/biom9030090] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/24/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
The properties and characteristics of calix[n]arenes are described, as well as their capacity to form amphiphilic assemblies by means of the design of synthetic macrocycles with a hydrophilic head and a hydrophobic tail. Their interaction with various substances of interest in pharmacy, engineering, and medicine is also described. In particular, the role of the calix[n]arenes in the detection of dopamine, the design of vesicles and liposomes employed in the manufacture of systems of controlled release drugs used in the treatment of cancer, and their role in improving the solubility of testosterone and anthelmintic drugs and the biocompatibility of biomaterials useful for the manufacture of synthetic organs is emphasized. The versatility of these macrocycles, able to vary in size, shape, functional groups, and hydrophobicity and to recognize various biomolecules and molecules with biological activity without causing cytotoxicity is highlighted.
Collapse
|
3
|
Genc HN, Sirit A. Novel and highly efficient bifunctional calixarene thiourea derivatives as organocatalysts for enantioselective Michael reaction of nitroolefins with diketones. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0761-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Titov DV, Gening ML, Tsvetkov YE, Nifantiev NE. Oligodentate glycoconjugates based on calixarenes: methods for the synthesis and biological activity. Russ Chem Bull 2014. [DOI: 10.1007/s11172-013-0082-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
|
6
|
Sansone F, Casnati A. Multivalent glycocalixarenes for recognition of biological macromolecules: glycocalyx mimics capable of multitasking. Chem Soc Rev 2013; 42:4623-39. [DOI: 10.1039/c2cs35437c] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Ling I, Sobolev AN, Alias Y, Raston CL. Micelle to extended multi-component bilayer systems involving decyl and dodecyl imidazolium and pyridinium cations. CrystEngComm 2013. [DOI: 10.1039/c3ce26991d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Galante E, Geraci C, Sciuto S, Campo VL, Carvalho I, Sesti-Costa R, Guedes PM, Silva JS, Hill L, Nepogodiev SA, Field RA. Glycoclusters presenting lactose on calix[4]arene cores display trypanocidal activity. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.06.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Mutihac L, Lee JH, Kim JS, Vicens J. Recognition of amino acids by functionalized calixarenes. Chem Soc Rev 2011; 40:2777-96. [DOI: 10.1039/c0cs00005a] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Dondoni A, Marra A. Calixarene and calixresorcarene glycosides: their synthesis and biological applications. Chem Rev 2010; 110:4949-77. [PMID: 20496911 DOI: 10.1021/cr100027b] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessandro Dondoni
- Dipartimento di Chimica, Laboratorio di Chimica Organica, Universita di Ferrara, Via L. Borsari 46, 44100 Ferrara, Italy.
| | | |
Collapse
|
11
|
Sansone F, Baldini L, Casnati A, Ungaro R. Calixarenes: from biomimetic receptors to multivalent ligands for biomolecular recognition. NEW J CHEM 2010. [DOI: 10.1039/c0nj00285b] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Abstract
From the authors' opinion, this chapter constitutes a modest extension of the seminal and inspiring contribution of Stowell and Lee on neoglycoconjugates published in this series [C. P. Stowell and Y. C. Lee, Adv. Carbohydr. Chem. Biochem., 37 (1980) 225-281]. The outstanding progresses achieved since then in the field of the "glycoside cluster effect" has witnessed considerable creativity in the design and synthetic strategies toward a vast array of novel carbohydrate structures and reflects the dynamic activity in the field even since the recent chapter by the Nicotra group in this series [F. Nicotra, L. Cipolla, F. Peri, B. La Ferla, and C. Radaelli, Adv. Carbohydr. Chem. Biochem., 61 (2007) 353-398]. Beyond the more classical neoglycoproteins and glycopolymers (not covered in this work) a wide range of unprecedented and often artistically beautiful multivalent and monodisperse nanostructures, termed glycodendrimers for the first time in 1993, has been created. This chapter briefly surveys the concept of multivalency involved in carbohydrate-protein interactions. The topic is also discussed in regard to recent steps undertaken in glycobiology toward identification of lead candidates using microarrays and modern analytical tools. A systematic description of glycocluster and glycodendrimer synthesis follows, starting from the simplest architectures and ending in the most complex ones. Presentation of multivalent glycostructures of intermediate size and comprising, calix[n]arene, porphyrin, cyclodextrin, peptide, and carbohydrate scaffolds, has also been intercalated to better appreciate the growing synthetic complexity involved. A subsection describing novel all-carbon-based glycoconjugates such as fullerenes and carbon nanotubes is inserted, followed by a promising strategy involving dendrons self-assembling around metal chelates. The chapter then ends with those glycodendrimers that have been prepared using commercially available dendrimers possessing varied functionalities, or systematically synthesized using either divergent or convergent strategies.
Collapse
|
13
|
Calixarene-based chiral phase-transfer catalysts derived from cinchona alkaloids for enantioselective synthesis of α-amino acids. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.tetasy.2008.02.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Marra A, Moni L, Pazzi D, Corallini A, Bridi D, Dondoni A. Synthesis of sialoclusters appended to calix[4]arene platforms via multiple azide-alkyne cycloaddition. New inhibitors of hemagglutination and cytopathic effect mediated by BK and influenza A viruses. Org Biomol Chem 2008; 6:1396-409. [DOI: 10.1039/b800598b] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Stephan H, Röhrich A, Noll S, Steinbach J, Kirchner R, Seidel J. Carbohydration of 1,4,8,11-tetraazacyclotetradecane (cyclam): synthesis and binding properties toward concanavalin A. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.10.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Abstract
Supramolecular chemistry in water is a constantly growing research area because noncovalent interactions in aqueous media are important for obtaining a better understanding and control of the major processes in nature. This Review offers an overview of recent advances in the area of water-soluble synthetic receptors as well as self-assembly and molecular recognition in water, through consideration of the functionalities that are used to increase the water solubility, as well as the supramolecular interactions and approaches used for effective recognition of a guest and self-assembly in water. The special features and applications of supramolecular entities in aqueous media are also described.
Collapse
Affiliation(s)
- Gennady V Oshovsky
- Laboratory of Supramolecular Chemistry and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | |
Collapse
|
17
|
|
18
|
Kocabas E, Durmaz M, Alpaydin S, Sirit A, Yilmaz M. Chiral mono and diamide derivatives of calix[4]arene for enantiomeric recognition of chiral amines. Chirality 2007; 20:26-34. [DOI: 10.1002/chir.20483] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Kocabas E, Karakucuk A, Sirit A, Yilmaz M. Synthesis of new chiral calix[4]arene diamide derivatives for liquid phase extraction of α-amino acid methylesters. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.tetasy.2006.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Katajisto J, Lönnberg H. Solid-Phase Synthesis of CyclicC-Glycoside/Amino Acid Hybrids by Carbamate Coupling Chemistry and On-Support Cyclization. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Carpenter C, Nepogodiev SA. Synthesis of a αMan(1→3)αMan(1→2)αMan Glycocluster Presented on aβ-Cyclodextrin Scaffold. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500146] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Synthesis and spectroscopic studies of isosteviol-calix[4]arene and -calix[6]arene conjugates. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.03.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|