1
|
Perdicchia D. Borane-Trimethylamine Complex: A Versatile Reagent in Organic Synthesis. Molecules 2024; 29:2017. [PMID: 38731507 PMCID: PMC11085582 DOI: 10.3390/molecules29092017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Borane-trimethylamine complex (Me3N·BH3; BTM) is the most stable of the amine-borane complexes that are commercially available, and it is cost-effective. It is a valuable reagent in organic chemistry with applications in the reduction of carbonyl groups and carbon-nitrogen double bond reduction, with considerable examples in the reduction of oximes, hydrazones and azines. The transfer hydrogenation of aromatic N-heterocycles and the selective N-monomethylation of primary anilines are further examples of recent applications, whereas the reduction of nitrobenzenes to anilines and the reductive deprotection of N-tritylamines are useful tools in the organic synthesis. Moreover, BTM is the main reagent in the regioselective cleavage of cyclic acetals, a reaction of great importance for carbohydrate chemistry. Recent innovative applications of BTM, such as CO2 utilization as feedstock and radical chemistry by photocatalysis, have extended their usefulness in new reactions. The present review is focused on the applications of borane-trimethylamine complex as a reagent in organic synthesis and has not been covered in previous reviews regarding amine-borane complexes.
Collapse
Affiliation(s)
- Dario Perdicchia
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
2
|
Synthesis of Carbosilane and Carbosilane-Siloxane Dendrons Based on Limonene. Polymers (Basel) 2022; 14:polym14163279. [PMID: 36015536 PMCID: PMC9416742 DOI: 10.3390/polym14163279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, carbosilane dendrons of the first, second, and third generations were obtained on the basis of a natural terpenoid, limonene. Previously, we have shown the possibility of selective hydrosilylation and hydrothiolation of limonene. It is proved that during hydrosilylation, only the isoprenyl double bond reacts, while the cyclohexene double bond does not undergo into the hydrosilylation reaction. However, the cyclohexene double bond reacts by hydrothiolation. This selectivity makes it possible to use limonene as a dendron growth center, while maintaining a useful function—a double bond at the focal point. Thus, the sequence of hydrosilylation and Grignard reactions based on limonene formed carbosilane dendrons. After that, the end groups were blocked by heptamethyltrisiloxane or butyllithium. The obtained substances were characterized using NMR spectroscopy, elemental analysis and GPC. Thus, the proposed methodology for the synthesis of carbosilane dendrons based on the natural terpenoid limonene opens up wide possibilities for obtaining various macromolecules: dendrimers, Janus dendrimers, dendronized polymers, and macroinitiators.
Collapse
|
3
|
Dubey SK, Salunkhe S, Agrawal M, Kali M, Singhvi G, Tiwari S, Saraf S, Saraf S, Alexander A. Understanding the Pharmaceutical Aspects of Dendrimers for the Delivery of Anticancer Drugs. Curr Drug Targets 2021; 21:528-540. [PMID: 31670619 DOI: 10.2174/1389450120666191031092259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/17/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Dendrimers are emerging class of nanoparticles used in targeted drug delivery systems. These are radially symmetric molecules with well-defined, homogeneous, and monodisperse structures. Due to the nano size, they can easily cross the biological membrane and increase bioavailability. The surface functionalization facilitates targeting of the particular site of action, assists the high drug loading and improves the therapeutic efficiency of the drug. These properties make dendrimers advantageous over conventional drug delivery systems. This article explains the features of dendrimers along with their method of synthesis, such as divergent growth method, convergent growth method, double exponential and mixed method, hyper-core and branched method. Dendrimers are effectively used in anticancer delivery and can be targeted at the site of tumor either by active or passive targeting. There are three mechanisms by which drugs interact with dendrimers, and they are physical encapsulation, electrostatic interaction, chemical conjugation of drug molecules. Drug releases from dendrimer either by in vivo cleavage of the covalent bond between drugdendrimer complexes or by physical changes or stimulus like pH, temperature, etc.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Shubham Salunkhe
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, 490024, India
| | - Maithili Kali
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Sanjay Tiwari
- UKA Tarsadia University, Maliba Pharmacy College, Gopal-Vidyanagar Campus, Surat, Gujarat, 394350, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER GUWAHATI), Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup- 781125, Guwahati (Assam), India
| |
Collapse
|
4
|
Anomeric O-Functionalization of Carbohydrates for Chemical Conjugation to Vaccine Constructs. Molecules 2018; 23:molecules23071742. [PMID: 30018207 PMCID: PMC6099650 DOI: 10.3390/molecules23071742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022] Open
Abstract
Carbohydrates mediate a wide range of biological interactions, and understanding these processes benefits the development of new therapeutics. Isolating sufficient quantities of glycoconjugates from biological samples remains a significant challenge. With advances in chemical and enzymatic carbohydrate synthesis, the availability of complex carbohydrates is increasing and developing methods for stereoselective conjugation these polar head groups to proteins and lipids is critically important for pharmaceutical applications. The aim of this review is to provide an overview of commonly employed strategies for installing a functionalized linker at the anomeric position as well as examples of further transformations that have successfully led to glycoconjugation to vaccine constructs for biological evaluation as carbohydrate-based therapeutics.
Collapse
|
5
|
Affiliation(s)
- Megan Garland
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Sebastian Loscher
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Matthew Bogyo
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| |
Collapse
|
6
|
Fuentes-Paniagua E, Peña-González CE, Galán M, Gómez R, de la Mata FJ, Sánchez-Nieves J. Thiol-Ene Synthesis of Cationic Carbosilane Dendrons: a New Family of Synthons. Organometallics 2013. [DOI: 10.1021/om301217g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elena Fuentes-Paniagua
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| | - Cornelia E. Peña-González
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| | - Marta Galán
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| | - Rafael Gómez
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| | - F. Javier de la Mata
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| | - Javier Sánchez-Nieves
- Departamento de Quı́mica Orgánica
y Quı́mica
Inorgánica and ‡Networking Research Center for Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), Universidad de Alcalá, Campus Universitario,
E-28871 Alcalá de Henares (Madrid), Spain
| |
Collapse
|
7
|
Rasines B, Sánchez-Nieves J, Maiolo M, Maly M, Chonco L, Jiménez JL, Muñoz-Fernández MÁ, de la Mata FJ, Gómez R. Synthesis, structure and molecular modelling of anionic carbosilane dendrimers. Dalton Trans 2013; 41:12733-48. [PMID: 22968584 DOI: 10.1039/c2dt31099f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anionic carbosilane dendrimers of generations 1-3 have been synthesized containing carboxylate G(n)X(C(2)H(4)CO(2)Na)(m) and sulfonate G(n)X(C(2)H(4)SO(3)Na)(m) peripheral groups and derived from two different cores, 1,3,5-(HO)(3)C(6)H(3) (X = O(3)) and Si(C(3)H(5))(4) (X = Si). The peripheral anionic groups make these dendrimers water soluble, despite their highly hydrophobic framework. These dendrimers present a net negative charge in water, which was influenced by the pH of the medium. This characteristic was studied by pH titration. Also molecular modeling calculations have been performed to study differences in an aqueous medium between carboxylate and sulfonate dendrimers of different cores. The results obtained were also compared with those obtained from DOSY NMR experiments and zeta-potential measurements.
Collapse
Affiliation(s)
- Beatriz Rasines
- Dpto. de Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares (Madrid), Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Sánchez-Nieves J, Perisé-Barrios AJ, Ortega P, Corbí ÁL, Domínguez-Soto Á, Muñoz-Fernández MÁ, Gómez R, Javier de la Mata F. Study of cationic carbosilane dendrimers as potential activating stimuli in macrophages. RSC Adv 2013. [DOI: 10.1039/c3ra43338b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
10
|
Wittmann V, Pieters RJ. Bridging lectin binding sites by multivalent carbohydrates. Chem Soc Rev 2013; 42:4492-503. [DOI: 10.1039/c3cs60089k] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
A carbosilane dendrimer and a silacyclopentadiene analog carrying peripheral lactoses as drug-delivery systems. Bioorg Med Chem Lett 2012; 22:3564-6. [DOI: 10.1016/j.bmcl.2012.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/20/2012] [Accepted: 03/07/2012] [Indexed: 11/23/2022]
|
12
|
Mishra V, Gupta U, Jain NK. Surface-Engineered Dendrimers: a Solution for Toxicity Issues. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:141-66. [DOI: 10.1163/156856208x386246] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vijay Mishra
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar (M.P.) 470003, India
| | - Umesh Gupta
- b Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar (M.P.) 470003, India
| | - N. K. Jain
- c Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar (M.P.) 470003, India
| |
Collapse
|
13
|
Synthesis and biological evaluation of sialic acid derivatives containing a long hydrophobic chain at the anomeric position and their C-5 linked polymers as potent influenza virus inhibitors. Bioorg Med Chem 2012; 20:446-54. [DOI: 10.1016/j.bmc.2011.10.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 11/18/2022]
|
14
|
Sánchez-Nieves J, Ortega P, Muñoz-Fernández MÁ, Gómez R, de la Mata FJ. Synthesis of carbosilane dendrons and dendrimers derived from 1,3,5-trihydroxybenzene. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.09.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Affiliation(s)
- George R. Newkome
- Departments of Polymer Science and Chemistry, University of Akron, Akron, Ohio 44325-4717, and Department of Chemistry, Hiram College, Hiram, Ohio 44234
| | - Carol Shreiner
- Departments of Polymer Science and Chemistry, University of Akron, Akron, Ohio 44325-4717, and Department of Chemistry, Hiram College, Hiram, Ohio 44234
| |
Collapse
|
16
|
Ortega P, Serramía MJ, Muñoz-Fernández MA, Javier de la Mata F, Gómez R. Globular carbosilane dendrimers with mannose groups at the periphery: synthesis, characterization and toxicity in dendritic cells. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.02.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Krupková A, Čermák J, Walterová Z, Horský J. Structural Defects in Polyallylcarbosilane Dendrimers and Their Polyol Derivatives Characterized by NMR and MALDI-TOF Mass Spectrometry. Macromolecules 2010. [DOI: 10.1021/ma100315w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Aizawa H, Hatano K, Saeki H, Honsho N, Koyama T, Matsuoka K, Terunuma D. Analytical investigations of the behavior of silole-core dendrimers with peripheral globotriaose in water and acetone/water mixed solvent. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Kulkarni AA, Weiss AA, Iyer SS. Glycan-based high-affinity ligands for toxins and pathogen receptors. Med Res Rev 2010; 30:327-93. [DOI: 10.1002/med.20196] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Gajbhiye V, Palanirajan VK, Tekade RK, Jain NK. Dendrimers as therapeutic agents: a systematic review. J Pharm Pharmacol 2010. [PMID: 19703342 DOI: 10.1211/jpp.61.08.0002] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Objectives
Dendrimers by virtue of their therapeutic value have recently generated enormous interest among biomedical scientists. This review describes the therapeutic prospects of the dendrimer system.
Key findings
Their bioactivity suggests them to be promising therapeutic agents, especially in wound healing, bone mineralisation, cartilage formation and tissue repair, and in topical treatments to prevent HIV transmission. Findings also demonstrate their potential as anti-prion, anti-Alzheimer's, anticoagulant, antidote, anti-inflammatory and anticancer agents. One of the dendrimer-based formulations with activity against herpes simplex virus (VivaGel from Starpharma) has successfully completed phase I clinical trials and is expected to be available on the market soon.
Summary
All reports cited in this review demonstrate the use of dendrimers as medical therapeutics in different ailments. The review focuses on the current state of therapeutic potential of the dendrimer system.
Collapse
Affiliation(s)
- Virendra Gajbhiye
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr Hari Singh Gour University, Sagar, India
| | - Vijayaraj K Palanirajan
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr Hari Singh Gour University, Sagar, India
| | - Rakesh K Tekade
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr Hari Singh Gour University, Sagar, India
| | - Narendra K Jain
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr Hari Singh Gour University, Sagar, India
| |
Collapse
|
21
|
Abstract
From the authors' opinion, this chapter constitutes a modest extension of the seminal and inspiring contribution of Stowell and Lee on neoglycoconjugates published in this series [C. P. Stowell and Y. C. Lee, Adv. Carbohydr. Chem. Biochem., 37 (1980) 225-281]. The outstanding progresses achieved since then in the field of the "glycoside cluster effect" has witnessed considerable creativity in the design and synthetic strategies toward a vast array of novel carbohydrate structures and reflects the dynamic activity in the field even since the recent chapter by the Nicotra group in this series [F. Nicotra, L. Cipolla, F. Peri, B. La Ferla, and C. Radaelli, Adv. Carbohydr. Chem. Biochem., 61 (2007) 353-398]. Beyond the more classical neoglycoproteins and glycopolymers (not covered in this work) a wide range of unprecedented and often artistically beautiful multivalent and monodisperse nanostructures, termed glycodendrimers for the first time in 1993, has been created. This chapter briefly surveys the concept of multivalency involved in carbohydrate-protein interactions. The topic is also discussed in regard to recent steps undertaken in glycobiology toward identification of lead candidates using microarrays and modern analytical tools. A systematic description of glycocluster and glycodendrimer synthesis follows, starting from the simplest architectures and ending in the most complex ones. Presentation of multivalent glycostructures of intermediate size and comprising, calix[n]arene, porphyrin, cyclodextrin, peptide, and carbohydrate scaffolds, has also been intercalated to better appreciate the growing synthetic complexity involved. A subsection describing novel all-carbon-based glycoconjugates such as fullerenes and carbon nanotubes is inserted, followed by a promising strategy involving dendrons self-assembling around metal chelates. The chapter then ends with those glycodendrimers that have been prepared using commercially available dendrimers possessing varied functionalities, or systematically synthesized using either divergent or convergent strategies.
Collapse
|
22
|
Architectures of Multivalent Glycomimetics for Probing Carbohydrate–Lectin Interactions. GLYCOSCIENCE AND MICROBIAL ADHESION 2009; 288:183-65. [DOI: 10.1007/128_2008_30] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Yamada A, Hatano K, Koyama T, Matsuoka K, Takahashi N, Hidari KIPJ, Suzuki T, Suzuki Y, Terunuma D. Lactotriaose-containing carbosilane dendrimers: Syntheses and lectin-binding activities. Bioorg Med Chem 2007; 15:1606-14. [PMID: 17197189 DOI: 10.1016/j.bmc.2006.12.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 11/15/2022]
Abstract
Carbosilane dendrimers periphery-functionalized with lactotriaose (GlcNAcbeta1-3Galbeta1-4Glc) with valencies of three, four, six, and twelve were prepared for use in a lectin-binding assay. A lactotriaose derivative was prepared from D-glucosamine and D-lactose derivatives. The N-Troc-protected glucosamine glycosyl donor and 3'-O-unprotected lactose glycosyl acceptor were condensed in the presence of silver trifluoromethanesulfonate and methylsulfenyl bromide to provide corresponding trisaccharide with new beta-1-3 linkages in 92% yield. The protection group of the trisaccharide was transformed into an acetyl group. The 4-pentenyl glycoside was prepared from the acetate via glycosyl bromide. The alkene was converted into acetyl sulfide by addition of thioacetic acid under radical conditions. The lactotriaose unit was linked with carbosilane dendrimers to afford acetyl-protected glycodendrimers. De-O-acetylation of the dendrimers was carried out in the presence of sodium methoxide and then aq NaOH to give the desired lactotriaose clusters using a carbosilane dendrimer backbone. Their biological activities toward WGA were evaluated by fluorescence methods. The binding constants of free lactotriaose and trivalent, tetravalent, hexavalent, and dodecavalent glycodendrimers to WGA were determined to be 1.1x10(3), 4.4x10(4), 5.1x10(4), 2.8x10(6), and 1.3x10(6) M-1, respectively. The hexavalent glycodendrimer showed a 2500-fold larger binding effect than that of free lactotriaose.
Collapse
Affiliation(s)
- Akihiro Yamada
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|