1
|
Jiao D, Luo L, Chen YJ, Li B, Jiao F, Lu YN, Yu BF, Tian Y, Lei HT, Xu ZL. Fluorescence immunosensor based on a specific monoclonal antibody for highly sensitive and rapid detection of gizzerosine in feed. Talanta 2024; 276:126288. [PMID: 38781916 DOI: 10.1016/j.talanta.2024.126288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Gizzerosine is a biogenic amine produced in fish meal drying process and posted higher mortality due to gizzard erosion in poultry than histamine. However, it is difficult to obtain gizzerosine and achieve sensitive practical detection due to its simple structure. Herein, a monoclonal antibody (mAb) specific to gizzerosine was generated based on the new structural design and a fluorescence immunosensor for sensitive and on-site detection of gizzerosine in feed was first established. Molecular modeling of the three-dimensional (3D) structure and surface electrostatic potential of gizzerosine indicated that the carbonyl group of gizzerosine hapten might affect the important sites of antigen-antibody interactions. The proposed structure was used to obtain the sensitive and specific mAb with IC50 of 3.88 ng/mL in indirect competitive ELISA which was approximately 100-fold lower than that of direct competitive ELISA. Considering the practical application scenarios, a fluorescence immunosensor based on microporous dry method integrated with independent quality control line was established to improve detection stability. Under the optimum conditions, the proposed immunosensor showed a good linear relationship from 1.10 to 19.78 ng/mL and provided a low detection limit of 50 ng/g which was approximately 80-fold lower than the maximum recommended amount (0.4 mg/kg) of gizzerosine in feed. The recoveries of 6 kinds of feed ranged from 83.1 % to 114.3 %, which was in good consistence with that of UHPLC-MS/MS. Overall, this work provides a fast, cost-effective and reliable on-site tool for rapid screening of gizzerosine residues in feed samples.
Collapse
Affiliation(s)
- Di Jiao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China
| | - Yi-Ji Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Li
- Guangzhou Wanlian Biotechnology Co. Ltd, Guangzhou, 510530, China
| | - Fan Jiao
- Gong Yi Shi Di San Chu Ji Zhong Xue, Zhengzhou, 451200, China
| | - Yi-Na Lu
- Shantou Customs District, Shantou, 515041, China
| | - Bei-Feng Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Ye Tian
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China.
| |
Collapse
|
2
|
Jiao D, Jiao F, Qian ZJ, Luo L, Wang Y, Shen YD, Lei HT, Xu ZL. Formation and Detection of Gizzerosine in Animal Feed Matrices: Progress and Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3247-3258. [PMID: 38320115 DOI: 10.1021/acs.jafc.3c05973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Gizzerosine is responsible for gizzard erosion and black vomit, owing to excessive gastric acid secretion in poultry. It is a biogenic amine that forms during feed processing. Gizzerosine, a derivative of histamine, is a serious threat to animal feed safety and poultry production because it is more potent after ingestion and more harmful to poultry than histamine. The difficulty of obtaining gizzerosine and the lack of simple, rapid, and sensitive in vitro detection techniques have hindered studies on the effects of gizzerosine on gizzard health and poultry production. In this review, we evaluated the natural formation and the chemical synthesis methods of gizzerosine and introduced seven detection methods and their principles for analyzing gizzerosine. This review summarizes the issues of gizzerosine research and suggests methods for the future development of gizzerosine detection methods.
Collapse
Affiliation(s)
- Di Jiao
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fan Jiao
- Gong Yi Shi Di San Chu Ji Zhong Xue, Zhengzhou 451200, China
| | - Zhen-Jie Qian
- Guangzhou Institute of Food Inspection, Guangzhou, 510410, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou, 510410, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Kiyota H. Synthetic studies of biologically active natural products contributing to pesticide development. JOURNAL OF PESTICIDE SCIENCE 2020; 45:177-183. [PMID: 32913421 PMCID: PMC7453299 DOI: 10.1584/jpestics.j20-03] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Natural product research, including total synthesis, is becoming increasingly important for the discovery of pesticide seeds and leads. Synthetic studies of biologically active compounds such as antibiotics (enacyloxins, polynactin, pamamycins, spirofungin A and B, glutarimides and antimycins), phytopathogenic toxins (pyricuol, pyriculariol, tabtoxinine-β-lactam, gigantenone, phomenone and phaseolinone), marine derived products (pteroenone, β-D-Asp-Gly, didemniselinolipid B, cortistatin A, sanctolide A and gizzerosine), POPs (dieldrin, endosulfan, HCB), plant hormones (abscisic acid and jasmonic acid), insect pheromones (endo-brevicomin etc.), especially using a variety of biotransformation are described.
Collapse
Affiliation(s)
- Hiromasa Kiyota
- Grad. Sch. Environmental & Life Science, Okayama University, 1–1–1 Tsushima-Naka, Kita, Okayama 700–8530, Japan
| |
Collapse
|
4
|
Fukatsu A, Morimoto Y, Sugimoto H, Itoh S. Modelling a ‘histidine brace’ motif in mononuclear copper monooxygenases. Chem Commun (Camb) 2020; 56:5123-5126. [DOI: 10.1039/d0cc01392g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A mononuclear copper complex bearing a ‘histidine brace’ is synthesised and characterised as an active-site model of mononuclear copper monooxygenases such as lytic polysaccharide monooxygenases (LPMOs) and particulate methane monooxygenase (pMMO).
Collapse
Affiliation(s)
- Arisa Fukatsu
- Department of Material and Life Science
- Division of Advanced Science and Biotechnology
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
| | - Yuma Morimoto
- Department of Material and Life Science
- Division of Advanced Science and Biotechnology
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
| | - Hideki Sugimoto
- Department of Material and Life Science
- Division of Advanced Science and Biotechnology
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
| | - Shinobu Itoh
- Department of Material and Life Science
- Division of Advanced Science and Biotechnology
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
| |
Collapse
|
5
|
Park G, Yu S, Kim S, Nah Y, Son A, You Y. Monocycloplatinated Solvento Complex Displays Turn-on Ratiometric Phosphorescence Responses to Histamine. Inorg Chem 2018; 57:13985-13997. [DOI: 10.1021/acs.inorgchem.8b02612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Tao Z, Hu Q, Xu X, Kiyota H, Chen Z, Xie S, Qiao N. Analytical Method to Evaluate Gizzerosine in Fishmeal After Diazonium Derivatization Using High-Performance Liquid Chromatography. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1364-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Traoré M, Mietton F, Maubon D, Peuchmaur M, Francisco Hilário F, Pereira de Freitas R, Bougdour A, Curt A, Maynadier M, Vial H, Pelloux H, Hakimi MA, Wong YS. Flexible Synthesis and Evaluation of Diverse Anti-Apicomplexa Cyclic Peptides. J Org Chem 2013; 78:3655-75. [DOI: 10.1021/jo4001492] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mariam Traoré
- Département de Pharmacochimie Moléculaire, Université Joseph Fourier-Grenoble 1, CNRS UMR 5063, CNRS ICMG FR 2607, bâtiment André
Rassat, 470 rue de la Chimie, F-38041 Grenoble Cedex 9, France
| | - Flore Mietton
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
| | - Danièle Maubon
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
- Laboratoire de Parasitologie-Mycologie, Département des Agents Infectieux, Centre Hospitalier Universitaire, BP
217, 38043 Grenoble cedex 9, France
| | - Marine Peuchmaur
- Département de Pharmacochimie Moléculaire, Université Joseph Fourier-Grenoble 1, CNRS UMR 5063, CNRS ICMG FR 2607, bâtiment André
Rassat, 470 rue de la Chimie, F-38041 Grenoble Cedex 9, France
| | - Flaviane Francisco Hilário
- Département de Pharmacochimie Moléculaire, Université Joseph Fourier-Grenoble 1, CNRS UMR 5063, CNRS ICMG FR 2607, bâtiment André
Rassat, 470 rue de la Chimie, F-38041 Grenoble Cedex 9, France
- Departamento de Quı́mica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais,
Brasil
- CAPES Foundation, Ministry of Education of Brazil, Brasilia DF 70040-020, Brazil
| | | | - Alexandre Bougdour
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
| | - Aurélie Curt
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
- Laboratoire de Parasitologie-Mycologie, Département des Agents Infectieux, Centre Hospitalier Universitaire, BP
217, 38043 Grenoble cedex 9, France
| | - Marjorie Maynadier
- Dynamique
des Interactions Membranaires Normales et Pathologiques, Université de Montpellier 2,
CNRS UMR 5235, CP 107, Place E. Bataillon, F-34095 Montpellier Cedex
5, France
| | - Henri Vial
- Dynamique
des Interactions Membranaires Normales et Pathologiques, Université de Montpellier 2,
CNRS UMR 5235, CP 107, Place E. Bataillon, F-34095 Montpellier Cedex
5, France
| | - Hervé Pelloux
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
- Laboratoire de Parasitologie-Mycologie, Département des Agents Infectieux, Centre Hospitalier Universitaire, BP
217, 38043 Grenoble cedex 9, France
| | - Mohamed-Ali Hakimi
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier-Grenoble 1, CNRS UMR 5163, BP 170, F-38042 Grenoble Cedex 9, France
| | - Yung-Sing Wong
- Département de Pharmacochimie Moléculaire, Université Joseph Fourier-Grenoble 1, CNRS UMR 5063, CNRS ICMG FR 2607, bâtiment André
Rassat, 470 rue de la Chimie, F-38041 Grenoble Cedex 9, France
| |
Collapse
|
8
|
|
9
|
|
10
|
Fanning KN, Sutherland A. A facile synthesis of (S)-gizzerosine, a potent agonist of the histamine H2-receptor. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.09.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|